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Abstract

Until recent years, the common wisdom among statisticians and machine learning
researchers was to consider overfitting as a universally bad phenomenon. Research
had shown that overfitting on training data led to poor generalization performances
in many general settings. One incarnation of this phenomenon is the so-called bias-
variance trade-off which implies that by reducing the bias of a model, necessarily, the
variance of the model increases. However, with the emergence of deep learning, re-
searchers have come to notice that some deep learning models are able to perform
very well despite heavily overfitting the data, seemingly contradicting the common
wisdom. This led researchers to investigate the concept of benign overfitting, overfit-
ting that does not hurt generalization capabilities. In particular, in order to analyze
this surprising phenomenon, they tried to understand under which circumstances it
would arise in classical models that are simpler than neural networks. In this paper,
we review a variety of results concerning benign overfitting that have been recently
uncovered in the context of minimum l2−norm interpolators for linear regression and
ridge regression. Along the way, certain tools that are not in the traditional toolbox of
researchers in the field such as the Dvoretzky-Milman theorem are presented in order
to prove some of the results. These tools might provide a novel perspective on the
way to approach certain problems in statistical learning theory. Finally, we make an
attempt to generalize the results for minimum lp−norm interpolators by adapting the
geometric approach based on Dvoretzky-Milman theorem.
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Chapter 1

Introduction

1.1 The framework of function approximation

In this section, we set the framework of the general problem of function approxima-
tion. To this end, we draw inspiration from the second chapter of the book [HTF09].

We start by presenting the general framework. Let X be the space of all possible in-
puts and Y the space of all possible outputs. Assume that there is some unknown joint
probability distribution P on the set X × Y . Given an random vector (X, Y ) ∈ X × Y
We are looking for a function f : X → Y from a given function class F , that predicts
outputs Y from inputs X . In order to discriminate functions in terms of their predic-
tion performance, we must introduce some notion of metric allowing us to quantify
how well a function predicts the output. This motivates the definition of a loss func-
tional l(Y, f(X)) whose purpose is to penalize the errors in predictions incurred by the
choice of a certain function. The risk of f is defined as R(f) := E(X,Y )∼P [l(Y, f(X))]. It
measures how far the prediction f(X) is from Y with respect to the loss in expectation,
for a randomly drawn pair (X, Y ) ∼ P . The goal is then to find a prediction function
f ∈ F that minimizes the risk R(f):

f ∗ ∈ arg min
f∈F

R(f). (1.1)

This framework is defined with the following situation in mind: we have limited
data {(x1, y1), . . . , (xn, yn)} ⊂ X ×Y that are input-output pairs drawn from an under-
lying unknown joint distribution P . We wish to find a function f that is able to predict
new outputs y ∈ Y from new inputs x ∈ X . In this setting, we do not have access
to the risk since we do not know the probability distribution P ; hence, we define the
empirical risk that is designed to estimate the true risk, R̂(f) := 1

n

∑n
i=1 l(f(xi), yi). In

order to get as close as possible to solving the problem (1.1) with our limited data, we
look for a solution

f̂ ∈ arg min
f∈F

R̂(f). (1.2)

This is the problem of empirical risk minimization (ERM).
From now on we will restrict our attention to the setting where X = Rp, and Y = R

for simplicity. Now that the general setting has been introduced, let us present some
classical examples that fit into this framework.
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1.2 Linear regression

Linear regression consists in predicting real-valued outputs y from an affine function
of inputs x in Rp. Consider data (xi, yi)

n
i=1 ⊂ Rp × R coming from an unknown proba-

bility distribution P . The loss that is commonly considered in linear regression is the
squared error loss, given by l(Y, f(X)) := (Y − f(X))2. As announced, the function
class we restrict to in the linear model is FL := {f : Rp → R|f is affine}. FL can equiv-
alently be written as FL = {⟨β, ·⟩ + β0|β ∈ Rp, β0 ∈ R}. Moreover, we assume that the
data obeys the relationship

yi = f ∗(xi) + ξi = β∗
0 + ⟨β∗, xi⟩+ ξi, ∀i ∈ {1, . . . , n}, (1.3)

where ξ ∈ Rn describes an unobserved noise that we model to be random, from a
known probability distribution. In words, we assume there is a linear relationship be-
tween the inputs and outputs, modulo some noise ξ. For the remainder of the text,
unless stated otherwise, we assume centered σξ−subgaussian noise.

Now, let us turn our attention to what the linear regression solution looks like.
For the remainder of this exposition we will use the convention that the input vector
xi = (1, xi)

⊤ ∈ Rp for all i ∈ {1, . . . , n} to simplify the notations by accounting for an
intercept term. First of all, let X ∈ Rn×p denote the matrix with i−th row being the
observation xi for all i ∈ {1, . . . , n}, and y ∈ Rn denote the output vector (y1, . . . , yn)⊤.
Notice that FL = {⟨β, ·⟩|β ∈ Rp} and thus,

min
f∈FL

R̂(f) = min
f∈FL

1

n

n∑
i=1

l(f(xi), yi) = min
f∈FL

1

n

n∑
i=1

(yi − f(xi))
2

= min
β∈Rp

1

n

n∑
i=1

(yi − ⟨β, xi⟩)2 =
1

n
min
β∈Rp

∥y − Xβ∥22.

Due to the convexity of the objective, the solution to this minimization problem is
obtained by setting the gradient with respect to β to zero. This derivation gives the
so-called normal equation which the minimizer β̂ must fulfill:

X⊤Xβ = Xy.

The solution to the normal equation depends on the rank of the matrix X, as well as on
the relationship between the dimension of the feature space p and the number of ob-
servations n. We distinguish the cases as follows. If p = n or in the underparametrized
regime, that is when p < n, if X has full rank p, then the normal equation has a unique
solution given by β̂ = (X⊤X)−1Xy. If X does not have full rank, then the normal equa-
tion has infinitely many solutions. In the overparametrized regime, when n < p, if X
has full rank n, the normal equation does not have a unique solution and in this case
we can use regularization techniques to find a suitable solution. If X does not have
full rank, then the normal equation has no solution. In this paper, we will explore the
behaviour of the linear model exclusively in the overparametrized regime, with full
rank design matrix X; we will discuss certain regularization techniques that will help
us choose particular solutions.
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1.2.1 Squared error loss and bias-variance trade-off

In the context of the squared error loss, suppose that the class function F is unre-
stricted. Then the solution to the minimization problem (1.1) is given by

f ∗(x) = E(Y |X = x), (1.4)

that is, the solution is defined as the expected value of Y given X . However, we do
not have access to this expected value since the conditional probability distribution of
Y given X is unknown. The next best thing that we have at our disposal is arguably
the k−nearest-neighbor prediction, which is given by

f̂(x) :=
1

k

∑
xi∈Nk(x)

yi,

where Nk(x) denotes the neighborhood of x given by the k closest points xi with re-
spect to the Euclidean norm, and where k is a parameter to be chosen a priori. This
solution might seem satisfactory at first glance but it has a major drawback. In order
to maintain a certain density of points in the feature space Rp as the dimension p in-
creases we need the number of observations n to grow exponentially with p. This is
known as the curse of dimensionality. The solution above provides us with the best
local estimate but in high dimension, with a limited number of observations, this local
estimate turns out to be downright bad. This motivates the seemingly strong structural
assumption on the function space that is made in the linear model. On top of that, the
solution to (1.2) with respect to this function class is easily interpretable, which also
explains the ubiquity of the linear model in applications.
The situation above illustrates the necessity of choosing the right amount of structural
assumptions in order to find meaningful and robust solutions. To make this choice op-
timally and resolve the tension between expressivity and restrictiveness of the model,
one popular formalism is given by the bias-variance trade-off.
The squared error loss has the particular property that its associated risk R(f) =
E(X,Y )(Y − f(X))2, also called the mean squared error (MSE), admits a useful de-
composition into bias and variance terms. The bias of a one-dimensional statistical
estimator θ̂ of a parameter θ ∈ Θ is defined as Biasθ(θ̂, θ) = Eθ(θ̂ − θ) and the variance
as Varθ(θ̂) = Eθ(θ̂−Eθ[θ̂])2 where the θ in the subscript of the expectation is to indicate
that the expectation is taken only over θ. The decomposition of the MSE into bias and
variance terms in the one-dimensional case is the following.

MSEθ(θ̂) = Biasθ(θ̂, θ)2 + Varθ(θ̂). (1.5)

In higher dimensions, say for θ ∈ Θ = Rp, the bias is still defined the same way, but
instead of the variance, the term that will appear in the bias-variance decomposition is
some value depending on the covariance matrix of θ. The bias-variance decomposition
is given in this case by the following.

MSEθθ̂ = ∥Biasθ(θ̂, θ)∥22 + tr(cov(θ̂)). (1.6)
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Proof.

MSEθθ̂ = E∥θ̂ − θ∥2 =
p∑
i=1

E[θ̂i − θi]
2 =

p∑
i=1

(
Biasθ(θ̂i, θi)2 + Varθi(θ̂i)

)
= ∥Biasθ(θ̂, θ)∥22 + tr(cov(θ̂)).

The softer the structural assumptions made on the function class F the lower the
bias because the model is able to find functions that are closer to the true function.
However, the variance tends to be larger in that case, because the model is more sensi-
tive to noise, as it has more freedom to fit to the observations. Conversely, the stronger
the structural assumptions, the larger the bias and the lower the variance become be-
cause the model finds a solution from a restricted function class, and is thus less sen-
sitive to noise and more prone to find solutions further from the observations. This is
known as the bias-variance trade-off.
In the case of the linear model, we restrict ourselves to affine functions and therefore
the bias will increase when the linear relationship between X and Y that we assume
in (1.3) does not reflect the reality.

Therefore, the bias-variance trade-off is telling us that we should expect an algo-
rithm that perfectly fits the training data (and minimizes the bias) to perform poorly
on new unseen data. However, it has been observed in practice, that there are algo-
rithms that generalize well on new data, despite interpolating the training data. In
this manuscript, we review some papers and try to understand when and why this
peculiar phenomenon can be observed in linear regression.

1.3 Ridge regression and LASSO

Ridge regression is a learning algorithm akin to linear regression coming with a reg-
ularization parameter λ ∈ R. The minimization problem of ridge regression is the
following.

min
β∈Rp

∥y − Xβ∥22 + λ∥β∥22.

where λ is a regularization hyperparameter that must be chosen a priori. The parame-
ter λ produces a penalty in term of the norm of the estimator β. As λ tends to +∞, the
estimator β must shrink to 0 and thus the minimization problem finds solutions that
have small l2−norm. Conversely, as λ tends to 0, the regularization constraint on the
estimator β vanishes and the minimization problem’s solution coincides with linear
regression. The case when λ = 0 is called the ridgeless case. In the overparametrized
regime (p > n), the solution to the ridge regression minimization problem is the fol-
lowing.

β̂ = X⊤(XX⊤ + λI)−1y.

LASSO is another regularized learning algorithm, where this time the penalty is in
the l1−norm of the estimator. The minimization problem of LASSO is the following.

min
β∈Rp

∥y − Xβ∥22 + λ∥β∥1
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LASSO favors sparse solutions, that is, estimators that have only a few non-zero
entries. At a heuristic level, this is due to the fact that the l1−norm can be thought of
as a convex surrogate to the so-called l0−norm (which is not a norm) which is defined
as follows.
Given any vector β ∈ Rp,

∥β∥0 = ‘number of non-zero entries of β′

Introducing a penalty in term of the l0−norm would make the minimization problem
non-convex and therefore hard to solve, that is why we resort to an l1−penalty. The
fact that the l1−norm can serve as a surrogate to the l0−norm can be understood at the
intuitive level thanks to the observation that the shape of the l1−ball favors sparsity,
when compared to the geometry of the l2−ball.

1.4 Minimum norm interpolators

In 1.2, we mention the need for regularization techniques to differentiate between so-
lutions to the normal equation in the overparametrized regime; in the present section,
we discuss the regularization consisting in picking a solution which has minimal norm
among all possible solutions to the normal equation. Given a norm ∥·∥, a minimum
norm interpolator is an estimator β̂ that is a solution to the minimization problem

min
β∈Rp

∥β∥. (1.7)

s.t. Xβ = y (1.8)

There are multiple reasons for being interested in minimum norm interpolators.
A motivation for studying the interpolating regime is the observation of certain deep
neural networks that perfectly fit the data and are still capable of good generalization,
as in [ZBH+16], [ZBH+21], and [BHMM19a]. Another motivation, this time for study-
ing interpolating estimators that have minimal norm, is the example of basis pursuit
in compressed sensing that we are going to develop in 1.4.2.

1.4.1 l2−norm

In the case of the l2−norm, this problem admits a closed form solution given by the
Moore-Penrose pseudoinverse, that is,

β̂ = X†y = X⊤(XX⊤)−1y. (1.9)

Proof. Let β̄ = X†y, and let β ∈ Rp, then,

Xβ − y = X(β − X†y) + (I − XX†)(−y).

Since I−XX† is the orthogonal projector onto Ker(X⊤) = Ker(X†), the two terms in the
right-hand side of the equation above are orthogonal. Therefore, by the Pythagorean
theorem,

∥Xβ − y∥2 = ∥X(β − X†y)∥2 + ∥(I − XX†)(−y)∥2 = ∥X(β − β̄)∥2 + ∥Xβ̄ − y∥2 ≥ ∥Xβ̄ − y∥2.
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The minimum l2−norm interpolator is relevant beyond the fact that it admits a
closed-form solution. For example, as discussed in [BHMM19b], there are certain
types of neural networks for which the stochastic gradient descent (SGD) algorithm,
with weights initialized at 0, converges to the minimum l2−norm interpolator.

In the case of other lp−norms, the minimization problem (1.7) is harder to ap-
proach. Let us now take a look at the case of the l1−norm, this is the so-called problem
of basis pursuit (BP).

1.4.2 l1−norm and basis pursuit

Historically, this problem arose in the field of compressed sensing, whose goal is to
find recovery guarantees of compressed signals. Hence, this part is inspired by lec-
tures notes on compressed sensing [Tao09] and the paper [CW08]. The setup of com-
pressed sensing is the following. In order to relate this problem to our setting, we use
the same notations as before, which are perhaps more traditional to statistics and ma-
chine learning.
Let X ∈ Rn×p, with n < p, β ∈ Rp, and y ∈ Rn. Suppose we want to measure a high-
dimensional vector β that can be thought of as an observation of a signal from the
real world such as an image or a video. Now, if we restrain ourselves to linear mea-
surements, how many measurements do we need to recover the observation? That is
the question compressed sensing is interested in answering. In mathematical terms,
viewing the matrix X as a matrix whose rows perform linear measurements of β, the
question can be formulated as the following. For which n can we solve the system of
equations

Xβ = y (1.10)

for β. The key assumptions made in compressed sensing are about the sparsity of the
signal captured by β as well as the incoherence of the measurement matrix X. We
assume that β is s−sparse, for some positive number s, where s−sparsity of a vector
is defined as the vector having at most s non-zero coordinates. If the support of the
vector β was known, the problem would be trivial, as one could simply reduce the
problem to the recovery of an s−dimensional signal. But if the support is unknown,
apart from the fact that it is s−dimensional, then what can we say about the numbers
of measurements n required to reconstruct exactly β from the linear measurements in
(1.10)?

Before answering this question, let us ask ourselves another one. Why would we
assume sparsity in the first place? We can argue that most of what we do in statistics
and machine learning is trying to uncover the underlying low-dimensional structure
of noisy data with different techniques. On a more philosophical level, if there was
no low-dimensional structure to be found in high dimensional data, it would make
the search for meaning in the data foolish. This presupposes that there exists a certain
basis or representation in which the data would be low-dimensional, and hence sparse.
Going back to our previous question, compressed sensing gives a surprising answer;
it states that the number of measurements required to exactly recover the signal β
needs only be proportional to the sparsity level of the signal, that is n ≳ s. Of course,

9



to obtain this conclusion, we need to make some assumptions. Let us state a result
from [Tao09].

Proposition 1.4.1. Suppose that any 2s columns of the X are linearly independent. Then any
s−sparse signal β ∈ Rp can be reconstructed uniquely from Xβ.

Proof. For a contradiction, suppose it is not the case. Then there exist two s−sparse
signals β, β′ ∈ Rp that satisfy Xβ = Xβ′, which implies that X(β − β′) = 0. But β − β′

is a 2s−sparse vector, and hence there are 2s columns of X that are dependent. This
gives a contradiction.

The assumption in the proposition above is a quantification of the incoherence of
the measurement matrix, and it is reasonable once n ≥ 2s. Moreover, the proof shows
how the s−sparse signal β can be reconstructed. It is the unique solution to the mini-
mization problem

β = arg min
β∈Rp

{∥β∥0 : Xβ = y} , (1.11)

where ∥β∥0 denotes the l0−norm of β that we define in 1.3. However, this optimization
problem is not convex and is computationally intractable. Therefore, we must resort
to another way of finding the signal β. This leads to basis pursuit, which consists in
solving the surrogate convex optimization problem

β = arg min
β∈Rp

{∥β∥1 : Xβ = y} , (1.12)

which can be solved by reformulating it as a linear program. However, basis pursuit
does not always recover the solution, so let us expand a bit on one case in which it can
recover a solution, without going into the details. This leads to the introduction of the
restricted isometry property (RIP).

Definition 1.4.1. For any integer s > 0, define the isometry constant δs of a matrix M
as the smallest number such that

(1− δs)∥v∥22 ≤ ∥Mv∥22 ≤ (1 + δs)∥v∥22

holds for all s−sparse vectors v ∈ Rp.

This constant basically quantifies how close to an isometry the matrix M is for
s−sparse vectors. We say that a matrix M obeys the RIP of order s if δs is not too close
to 1. When this property holds, we are able to recover an approximation of the original
signal. This is captured in the following result from [CRT05].

Theorem 1.4.2. Assume that δ2s <
√
2− 1, then the solution to (1.12) obeys

∥β∗ − β∥2 ≤ c∥β − βs∥1/
√
s and ∥β∗ − β∥1 ≤ c∥β − βs∥1,

for some constant c, where βs is the vector β with all but the largest s components set to 0, and
β∗ denotes the true signal.
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In particular, if β is s−sparse, then β = βs and we achieve exact recovery. There are
many interesting matrices that satisfy some RIP with value s close to n. Some notable
such matrices are random matrices that satisfy that kind of RIP with high probability:
for example, the matrix consisting of column vectors drawn uniformly from the unit
sphere in Rn, or the matrix whose entries are i.i.d standard Gaussian random variables.
These obey the condition of the above theorem with high probability, as soon as

n ≥ c1s log(n),

for some constant c1 > 0.
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Chapter 2

Benign Overfitting

Benign overfitting refers to the phenomenon of learning algorithms that fit to the train-
ing data very closely but still manage to generalize well on new data. In this chapter,
we look at several results that try to uncover what characteristics the problem must
have in order for benign overfitting to happen. We restrict ourselves to the specific
case of linear regression as well as ridge regression, in high dimensions, and to the
situation where the estimator β̂ of the true parameter β∗ interpolates the data (X, y).
We first make an exposition of the results of Bartlett et al. from [BLLT20] that focus
on linear regression. Then we discuss the results of Tsigler et al. from [TB20] focusing
on ridge regression and compare them with [BLLT20] in the absence of regularization.
Next, we analyze the paper of Lecué and Shang [LS22], devoted to the linear regres-
sion model as well, and contrast their results with the previous two papers, and the
differences in their approach.

2.1 Notations

This section regroups a few notations that we use throughout the paper. Every quan-
tity denoted by c, C, ci, Ci for some i ∈ Z is a positive constant if not specified other-
wise. For two vectors a, b ∈ Rl, for some l > 0, we interchangeably denote their inner
product by a⊤b or ⟨a, b⟩. We denote the operator norm of a matrix M by ∥M∥op, and
if it is a square matrix, we denote its trace by tr(M). We use ≲ and ≳ for inequality
up to a constant and write a ≈ b if both a ≲ b and a ≳ b hold. Given p the dimension
of the feature space Rp, we denote f(p) ≍ g(p) as p → +∞ if there exist two positive
constants C1, C2 and two positive integers p1, p2 such that

|f(p)| ≥ C1g(p) ∀p ≥ p1, and |f(p)| ≤ C2g(p) ∀p ≥ p2. (2.1)

2.2 Benign Overfitting in linear regression

The paper [BLLT20] examines in which regime benign overfitting can or cannot occur
in the linear regression model with subgaussian assumptions on the data (see A.1.1).
The main tools it uses are concentration of subgaussian and subexponential random
variables as well as classical generic chaining results for empirical processes to provide
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sharp upper bounds on the excess risk, a measure of the generalization error. In order
to do that, the excess risk is split into two terms that are analyzed separately. The
results they obtain only depend on the covariance matrix Σ and not on the interplay
between the true parameter β∗ and Σ; as we will see later, this may not provide the
full picture.

2.2.1 Setup of the paper of Bartlett et al.

In [BLLT20], they consider a general feature space H that is a separable Hilbert space.
However, we will only present their results for H = Rp because it is the most interest-
ing case for our purpose. The linear regression setup is the following.
We consider an input-output pair (X, Y ) ∈ Rp × R coming from a centered distribu-
tion P . We assume that Y = X⊤β∗ + ϵ where β∗ ∈ Rp is defined as in the introduction,
and ϵ is some centered random noise coming from a distribution that will be speci-
fied below. We let the covariance Σ have the spectral decomposition Σ = UΛU⊤ with
eigenvalues λ1 ≥ . . . ≥ λp ≥ 0 and corresponding eigenvectors u1, . . . , up. We assume
that X = UΛ1/2Z where Z has components that are independent σX−subgaussian ran-
dom variables, for some positive constant σX . Now let’s specify the distribution of the
noise. We assume that ϵ is σξ−subgaussian conditionally on X , that is, for all λ ∈ R,

E[λϵ|X] ≤ exp
(
Cσ2

ξλ
2
)
,

and that the conditional noise variance is bounded from below by some constant σ2,

E[ϵ2|X] ≥ σ2.

Now let us consider a training sample (xi, yi)
n
i=1 of n independent random variables

coming from P . Define X ∈ Rp × Rn and y = (y1, . . . , yn)
⊤ ∈ Rn as in the introduction,

and ξ := (ϵi, . . . , ϵn) ∈ Rn. With these notations, we are in the setup of linear regression
where y = Xβ∗ + ξ. The last assumption is that, almost surely, the projection of X on
the space orthogonal to any eigenvector of Σ spans a space of dimension n.

Remark 2.2.1. Notice that in particular all the assumptions made in the setup are ful-
filled for (X, Y ) coming from a centered multivariate normal distribution and when
rank(Σ) > n.

The situation they are interested in is the one where the parameter β interpolates
the data and hence they consider the minimum l2−norm interpolator that is intro-
duced in 1.4 and which admits a closed form solution.

Notations

Let us fix some more notations that will become handy when we discuss the pa-
pers [TB20], [LS22]. Given k ≤ p, let us denote the subspaces of the feature space
Rp spanned by the first k eigenvectors u1, . . . , uk of Σ, respectively the last p− k eigen-
vectors uk+1, . . . , up by V1:k, respectively Vk+1:p. Accordingly, let P1:k and Pk+1:p denote
the orthogonal projections onto V1:k and Vk+1:p respectively, and let β1:k := P1:kβ and
βk+1:p := Pk+1:pβ. Let us also denote Σ1:k = UΛ1:kU

⊤ where Λ1:k := diag(λ1, . . . , λk, 0, . . . , 0)
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and Σk+1:p analogously. Finally let X1:k := XP1:k and Xk+1:p := XPk+1:p so that X =
X1:k +Xk+1:p.

Definition 2.2.1. Given a covariance matrix Σ ∈ Rp×p with eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λp ≥ 0, and given k such that λk+1 > 0, we define the effective ranks

rk(Σ) :=
Σi>kλi
λk+1

=
tr(Σk+1:p)

∥Σk+1:p∥op
, and, (2.2)

Rk(Σ) :=
(Σi>kλi)

2

Σi>kλ2
i

=
(tr(Σk+1:p))

2

tr(Σ2
k+1:p)

. (2.3)

2.2.2 Excess risk and bias-variance decomposition

Definition 2.2.2. The excess risk of an estimator β̂ is defined as the difference between
the risk of β̂ conditioned on the data (X, y) and the risk of the true parameter β∗.

R(β̂) := R(β̂)−R(β∗) = E[(Y −X⊤β̂)2|(X, y)]− E[(Y −X⊤β∗)2].

In our setting, the excess risk can be decomposed into a bias and variance term
which allows us to nicely decouple the noise and the signal in the analysis of the excess
risk. In the following lemma we show how the decomposition is made in the case of
data X ∼ N (0,Σ) . Then in Lemma 2.3.2, we present a similar decomposition with a
proof that is more technical due to the weaker assumptions. Nevertheless, we think
Lemma 2.2.1 is as enlightening if not more for the understanding of the decomposition
and the quantities involved.

Lemma 2.2.1. For X ∼ N (0,Σ), Y = X⊤β∗ + ϵ, ξ ∼ N (0, v2ξI), and ϵ ∼ N (0, v2ξ ) indepen-
dent of X ,

R(β̂) = ∥Σ1/2(β̂ − β∗)∥22 = ∥Σ1/2(X⊤(XX⊤)−1X− I)β∗∥22 + ∥Σ1/2(X⊤(XX⊤)−1)ξ∥22,

and moreover,

EξR(β̂) = ∥Σ1/2(X⊤(XX⊤)−1X− I)β∗∥22 + v2ξ tr((XX⊤)−1XΣX⊤(XX⊤)−1)

Proof. Let us start by proving the first equality.

R(β̂) = E[(Y −X⊤β̂)2|(X, y)]− E[(Y −X⊤β∗)2] = E[(X⊤(β∗ − β̂) + ϵ)2|(X, y)]− E[ϵ2]
= E[(X⊤(β∗ − β̂))2|(X, y)] + 2E[(X⊤(β∗ − β̂)|(X, y)] · E[ϵ] = E[(X⊤(β∗ − β̂))2|(X, y)]
= E[X⊤(β∗ − β̂)(β∗ − β̂)⊤X|(X, y)] = E[tr(X⊤(β∗ − β̂)(β∗ − β̂)⊤X)|(X, y)]
= E[tr((β∗ − β̂)⊤XX⊤(β∗ − β̂))|(X, y)] = tr((β∗ − β̂)⊤E[XX⊤](β∗ − β̂))

= tr((β∗ − β̂)⊤Σ(β∗ − β̂)) = (β∗ − β̂)⊤Σ(β∗ − β̂) = ∥Σ1/2(β̂ − β∗)∥22.

For the second equality, we plug in the value of β̂, the minimum l2−norm interpolator.

∥Σ1/2(β̂ − β∗)∥22 = (β̂ − β∗)⊤Σ(β̂ − β∗) = β∗⊤(X⊤(XX⊤)−1X− I)⊤Σ(X⊤(XX⊤)−1X− I)β∗

+ ξ⊤(X⊤(XX⊤)−1)⊤Σ(X⊤(XX⊤)−1)ξ

= ∥Σ1/2(X⊤(XX⊤)−1X− I)β∗∥22 + ∥Σ1/2(X⊤(XX⊤)−1)ξ∥22.
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For the last equality, we use the same trick with the trace as for the first equality.

Eξ∥Σ1/2(X⊤(XX⊤)−1)ξ∥22 = tr(Σ(X⊤(XX⊤)−1)Eξ[ξξ⊤](X⊤(XX⊤)−1)⊤)

= v2ξ tr((XX⊤)−1XΣX⊤(XX⊤)−1).

Definition 2.2.3. We define the bias of the excess risk as

B := ∥Σ1/2(X⊤(XX⊤)−1X− I)β∗∥22

and the variance of the excess risk as

V := tr((XX⊤)−1XΣX⊤(XX⊤)−1)/v2ξ .

Remark 2.2.2. Notice that the quantities in Definition 2.2.3 do not depend on the noise
ξ. Furthermore, Lemma 2.2.1 and Definition 2.2.3 give us the nice expression

EξR(β̂) = B + v2ξV.

Remark 2.2.3. It turns out that the effective ranks of the covariance matrix are the right
notions to control the excess risk.

2.3 First sharp bound on the excess risk

We have now all the necessary tools to state the main theorem of the paper of Bartlett
et al. ( [BLLT20, Theorem 4]).

Theorem 2.3.1. For any σX , there are b, c, c1 > 1 for which the following holds. Consider a
linear regression problem satisfying the conditions listed above. Define

k∗ := min{k > 0 : rk(Σ) ≥ bn}, (2.4)

where the minimum of the empty set is defined to be ∞. Suppose that δ < 1 with log(1/δ) <

n/c. If k∗ ≥ n/c1, then ER(β̂) ≥ σ2/c. Otherwise,

R(β̂) ≤c∥β∗∥22∥Σ∥opmax

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

}

+ c log(1/δ)σ2
ξ

(
k∗

n
+

n

Rk∗(Σ)

)
with probability at least 1− δ, and

ER(β̂) ≥ σ2

c

(
k∗

n
+

n

Rk∗(Σ)

)
.
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Overview of the findings

Bartlett et al. were able to show in [BLLT20] that under suitable assumptions on the
covariance matrix, specifically on its effective ranks rk and Rk, benign overfitting is
observed with constant probability, that is, there are good sharp upper bounds on the
excess risk R(β̂). Informally, the spectrum of the covariance matrix must be such that
the eigenvalues that are more attributable to noise than signal do not decay too fast, in
order for the estimator to spread the noise over the dimensions of these eigenvalues.
In that setting, the estimator β̂ will exhibit benign overfitting properties. The most
important contributions of this work are probably the definition of k∗ and the implicit
feature space decomposition that happens in the proof of Lemma 2.3.3.

Theorem 2.3.1 motivates the following definition.

Definition 2.3.1. Let Σn denote the covariance matrix for data with n observations and
let k∗

n := min{k > 0 : rk(Σn) ≥ bn}. We say that a sequence of covariance matrices Σn

is benign if

lim
n→∞

r0(Σn)

n
= lim

n→∞

k∗
n

n
= lim

n→∞

n

Rk∗n(Σn)
= 0.

Remark 2.3.1. When the sequence of covariance matrices is benign, the excess risk of
the estimator β̂ converges to 0 as n tends to +∞.

The proof of Theorem 2.3.1 relies on a handful of lemmas, ranging from linear alge-
bra and convergence results to concentration of probability arguments. We are going
to examine parts of the proof more in detail to understand the phenomenons at play
and get a sense of the proof technique. Although the proof of the lower bound on the
excess risk is of interest, we focus our attention to the proof of the upper bound since
the purpose of the lower bound is only to show we cannot expect a much better upper
bound.
The proof starts by finding bounds on the excess risk, depending on two random ma-
trices that depend on the data. It is some kind of bias-variance decomposition that is
of the same nature as the one we perform in Lemma 2.2.1.

Lemma 2.3.2 (Lemma 7 in [BLLT20]). The excess risk of the minimum norm estimator sat-
isfies

R(β̂) ≤ 2β∗⊤Dβ∗ + cσ2 log(1/δ) tr(C)

with probability at least 1− δ over ϵ, and

EϵR(β̂) ≥ β∗⊤Dβ∗ + σ2 tr(C),

where

D = (I − X⊤(XX⊤)−1X)Σ(I − X⊤(XX⊤)−1X), and C = (XX⊤)−1XΣX⊤(XX⊤)−1.

The proof of Lemma 2.3.2 mostly consists in algebraic manipulations that are not
enlightening so we skip it; it must be noted however that it requires a high probability
upper bound on some quadratic form of C by its trace that is outside the scope of this
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exposition. Now that we have control over the excess risk with respect to quantities
depending on B and C, the rest of the proof of Theorem 2.3.1 consists in bounding
them efficiently.
The upper bound on β∗⊤Dβ∗ relies on standard arguments and directly uses a re-
sult from another paper. Since I − X⊤(XX⊤)−1X is a projection, it has operator norm
bounded by 1. Then by rearranging the quadratic form, we can obtain

β∗⊤Dβ∗ ≤
∥∥∥∥Σ− 1

n
X⊤X

∥∥∥∥
op

∥β∗∥22.

From there, using [KL14, Theorem 9], we immediately recover the bound that makes
Theorem 2.3.1 work. Note that [KL14, Theorem 9] is not trivial at all and relies on tools
such as generic chaining for empirical processes. The same kind of tools are needed in
some part of the proof of the main theorem of [LS22].
The crux of the paper of Bartlett et al., however, is bounding the trace of C. The upper
bound they obtain is the following.

Lemma 2.3.3 (Lemma 11 in [BLLT20]). There are constants b, c ≥ 1 such that if 0 ≤ k ≤
n/c, rk(Σ) ≥ bn, and l ≤ k, then with probability at least 1− 7e−n/c,

tr(C) ≤ c

(
l

n
+ n

∑
i>l λ

2
i

(
∑

i>k λi)
2

)
.

Then to be able to piece everything together to obtain Theorem 2.3.1, we also need
to find which l minimizes the upper bound of Lemma 2.3.3. This is elucidated by the
next lemma whose proof relies solely on clever rearrangements and on the definition
of k∗.

Lemma 2.3.4 (Lemma 17 in [BLLT20]). For any b ≥ 1 and k∗ as in Theorem 2.3.1, if
k∗ < ∞, we have

min
l≤k∗

(
l

bn
+ bn

∑
i>l λ

2
i

(λk∗+1rk∗(Σ))2

)
=

k∗

bn
+ bn

∑
i>l λ

2
i

(λk∗+1rk∗(Σ))2
=

k∗

bn
+

bn

Rk∗(Σ)
.

By putting together the bound on β∗⊤Bβ∗ and the one on tr(C) from Lemma 2.3.4
into Lemma 2.3.2, we obtain the upper bound in Theorem 2.3.1. We now spend some
time on the proof of Lemma 2.3.3.

2.3.1 Proof of Lemma 2.3.3

The first part of the proof consists in writing the trace of C as a function of independent
subgaussian random variables, thanks to the assumptions on our model. The tech-
nique to perform this rephrasing of tr(C) is purely algebraic; it relies on the Sherman-
Morrison-Woodbury formula, see [BLLT20, Lemma 20] for the proof.

Lemma 2.3.5 (Lemma 8 in [BLLT20]). Consider the covariance matrix Σ with eigenvalues
λ1 ≥ . . . ≥ λp such that λn > 0 and spectral decomposition Σ =

∑
j λjuju

⊤
j where the
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orthonormal vectors uj ∈ Rp are the eigenvectors corresponding to the eigenvalue λj , for all
j ∈ {1, . . . , p}. For i with λi > 0, define zi = Xui/

√
λi. Then,

tr(C) =
∑
i

λ2
i z

⊤
i

(∑
j

λjzjz
⊤
j

)−2

zi

 ,

and these zi are independent σX−subgaussian with unit variance. Furthermore, for any i with
λi > 0, we have

λ2
i z

⊤
i

(∑
j

λjzjz
⊤
j

)−2

zi =
λ2
i z

⊤
i A

−2
−i zi

(1 + λiz⊤i A
−1
−i zi)

2
,

where A−i =
∑

j ̸=i λjzjz
⊤
j .

With this new expression of tr(C), we can now make use of probabilistic arguments
to find high probability bounds by exploiting the subgaussianity. Let us introduce the
following quantities.

A =
∑
i

λiziz
⊤
i , A−i =

∑
j ̸=i

λjzjz
⊤
j , Ak =

∑
i>k

λiziz
⊤
i ,

and denote the i−th largest eigenvalue of a matrix M by µi(M). We arrive now at
the heart of the proof which consists in controlling the spectrum of these matrices
as well as the squared norms of multiple random vectors with subgaussian entries
simultaneously, both with high probability. This is done in the two following lemmas
that eventually conclude the proof of Lemma 2.3.3.

Lemma 2.3.6 (Lemma 9 in [BLLT20]). There is a universal constant c such that with proba-
bility at least 1− 2e−n/c,

1

c

∑
i

λi − cλ1n ≤ µn(A) ≤ µ1(A) ≤ c

(∑
i

λi + λ1n

)
.

Proof. We give now a proof sketch of Lemma 2.3.6. Let us first sketch the reasoning
of an ϵ−net argument. To obtain the result, we want to control the operator norm of
A which corresponds to controlling the quadratic form v⊤Av for any vector v ∈ Sn−1

2 ,
the l2−sphere of dimension n − 1. The strategy is to find a high probability upper
bound on the quadratic form for a single vector v. Then we would like to simply use
a union bound over all such vectors v but we cannot do that over all of Sn−1. We are
therefore using an ϵ−net to control the operator norm of A with the maximum of the
quadratic forms v⊤Av, only for v in the ϵ−net Nϵ. According to [BLLT20, Lemma 25],
for all ϵ < 1/2,

µ1(A) = ∥A∥op ≤ (1− ϵ)2max
v∈Nϵ

∥v⊤Av∥.

Note that an ϵ−net of Sn−1
2 has cardinality |Nϵ| = (Cϵ)n, for some constant C > 0.

The second step consists in noticing that for any v and i, v⊤zi is a c1∥v∥σX−subgaussian
random variable (see Example A.1.2), for some constant c1 and thus the quantity
v⊤Av =

∑
i λi(v

⊤zi)
2 can be controlled via Bernstein-like bounds. Indeed notice that
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since v⊤zi is c1∥v∥2σX−subgaussian, (v⊤zi)2 is c21∥v∥22σ2
X−subexponential (see Lemma

A.1.1), Now we are able to show that v⊤Av concentrates with high probability around
tr(Σ) =

∑
i λi. In order to do that, we can use Corollary A.1.4 for Xi = λi((v

⊤zi)
2 − 1)

and ai = 1, for all 0 ≤ i ≤ n and (Xi, ai) = (−λi, 1) otherwise to obtain that for all
t > 0, with probability at least 1− 2e−t,∣∣∣∣∣v⊤Av −∑

i

λi

∣∣∣∣∣ ≤ c2σ
2
X max

λ1t,

√
t
∑
i

λ2
i

 ,

for some constant c2.
The last step is to union bound over the vectors in Nϵ to get the high probability bound
on the eigenvalues of A that we need. Notice that a union bound is now possible since
it is over a finite number of vectors. Without getting into the details, this yields the
result of the lemma.

Corollary 2.3.7 (Lemma 10 in [BLLT20]). There are constants b, c ≥ 1 such that for any
k ≥ 0, with probability at least 1− 2e−n/c,

1. for all i ≥ 1,

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak) ≤ c

(∑
j>k

λj + λk+1n

)
,

2. for all 1 ≤ i ≤ k,

µn(A) ≥ µn(A−i) ≥ µn(Ak) ≥
1

c

∑
j>k

λj − cλk+1n,

3. if rk(Σ) ≥ bn,
1

c
λk+1rk(Σ) ≤ µn(Ak) ≤ µ1(Ak) ≤ cλk+1rk(Σ).

Remark 2.3.2. The proof of the corollary relies on Courant-Fischer Theorem and does
not provide any deep insight so we skip it.

The second lemma is the following.

Lemma 2.3.8 (Corollary 24 in [BLLT20]). There is a universal constant c such that for any
centered random vector z ∈ Rn with independent σ−subgaussian coordinates with unit vari-
ances, any random subspace L of Rn of codimension k that is independent of z, and any t > 0,
with probability at least 1− 3e−t,

∥z∥22 ≤ n+ cσ2(t+
√
tn), and ∥ΠLz∥22 ≥ n− cσ2(k + t+

√
nt),

where ΠL is the orthogonal projection onto L.

Remark 2.3.3. Lemma 2.3.8 shows how the the sum of squares of subgaussian ran-
dom variables behave and concentrate, as well as how much information or energy
of the vector is preserved with high probability by a random projection onto a lower-
dimensional subspace.
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Proof. Let us sketch the proof of Lemma 2.3.8. The first inequality relies on Corollary
A.1.4, for Xi = z2i − 1 and ai = 1 for all 0 ≤ i ≤ n to obtain for an absolute constant c
and for all t > 0, with probability at least 1− 2e−t,

|∥z∥22 − n| =

∣∣∣∣∣
n∑
i

(z2i − 1)

∣∣∣∣∣ ≤ cσ2max(t,
√
nt).

Then the second inequality relies on an upper bound on the the quadratic form z⊤Mz
by the trace of M , where M = Π⊤

L⊥ΠL⊥ , This upper bound is out of the scope of this
exposition and is the same as the one we allude to when we present Lemma 2.3.2. It
allows us to obtain, with a union bound to control ∥z∥22 simultaneously,

∥ΠLz∥22 = ∥z∥22 − ∥ΠL⊥z∥22 ≥ ∥z∥22 − σ2(2k + 4t) ≥ n− σ2(2k + 4t+ cmax(t,
√
nt),

with probability at least 1− 3e−t.

Now we are ready to provide a proof sketch of Lemma 2.3.3.

Proof. The proof relies on rewriting the trace of C with the expression in Lemma 2.3.5
and by splitting the sum as follows

tr(C) =
∑
i

λ2
i z

⊤
i A

−2zi =
l∑
i

λ2
i z

⊤
i A

−2
−i zi

(1 + λiz⊤i A
−1
−i zi)

2
+
∑
i>l

λ2
i z

⊤
i A

−2zi. (2.5)

The terms on the right-hand side are handled separately by leveraging the low dimen-
sionality of the first term and the small magnitude of the last p − l eigenvalues of the
second. For the first one, thanks to the assumption on the effective rank rk(Σ) ≥ bn,
we can use Lemma 2.3.7 to bound the following quadratic forms with high probability
for all 0 ≤ i ≤ l.

z⊤A−2
−i z ≲

∥z∥22
(λk+1rk(Σ))2

, and z⊤A−1
−i ≳

∥ΠLi∥22
λk+1rkΣ

,

where Li is the span of the n−k eigenvectors of A−i corresponding to its smallest n−k
eigenvalues. All in all, we obtain

λ2
i z

⊤
i A

−2
−i zi

(1 + λiz⊤i A
−1
−i zi)

2
≲

∥z∥22
∥ΠLizi∥42

.

Then, by applying Lemma 2.3.8 l times, and taking the union bound over all zi for
0 ≤ i ≤ l, we obtain that with high probability,

l∑
i

λ2
i z

⊤
i A

−2
−i zi

(1 + λiz⊤i A
−1
−i zi)

2
≲

l

n
. (2.6)

For the second term in Equation (2.5), we use again a combination of Lemma 2.3.6 and
Corollary A.1.4 to obtain the high probability bound∑

i>l

λiz
⊤
i A

−2zi ≲ n

∑
i>l λ

2
i

(λk+1rk(Σ))2
. (2.7)
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The first step is to notice that with high probability µn(A) ≳ λk+1rk(Σ) and thus,

∑
i>l

λ2
i z

⊤
i A

−2zi ≲

∑
i>l λ

2
i ∥zi∥22

(λk+1rk(Σ))2
,

and then to realize that the λ2
i ∥zi∥22 are subexponential random variables for all i > l

and use Corollary A.1.4 to upper bound their sum. Assembling the two bounds in
Equations (2.6) and (2.7) together gives us the result.

2.4 Benign Overfitting in ridge regression

In this section, we briefly review the work of Tsigler et al., in the paper [TB20]. We do
not look at it in its full generality but only consider non-negative regularization. Let us
introduce the setup. We want to upper bound the excess risk of the minimum l2−norm
estimator of ridge regression as introduced in 1.3 in the overparametrized regime, that
is, when p > n. Its solution is given by β̂ = X⊤(XX⊤ + λI)−1y. The assumptions
made on the model are the same as the ones in 2.2.1, except for the fact that we do not
assume independence of the observations, but instead assume some regularity in the
form of a bound on the condition number of the tail of the matrix XX⊤ + λI .

Definition 2.4.1. We define a new quantity, similar to the effective rank but that takes
into account the regularization λ.

ρk :=

∑
i>k λi + λ

nλk+1

2.4.1 Main result

According to Tsigler et al., [TB20, Theorem 1],

Theorem 2.4.1. Fix any constants b > 0, L > 0. Let k∗ = min{κ > 0 : ρκ ≤ b} and
Ak := Xk+1:pX

⊤
k+1:p + λI .

There exists a constant c which only depends on σX , b, L such that the following holds.
Suppose that for some k̄ < n/c and δ ≤ 1− ce−n/c, with probability at least 1− δ the matrix
Ak̄ is positive-definite (PD) with condition number at most L. Take k = min{k̄, k∗}. Then
with probability at least 1− ce−n/c − δ,

B ≤ c

(
∥Σ1/2

k+1:pβ
∗
k+1:p∥22 + ∥Σ−1/2

1:k β∗
1:k∥22

(
λ+

∑
i>k λi

n

)2
)
, and

V ≤ c

(
k

n
+

n
∑

i>k λ
2
i

(λ+
∑

i>k λi)
2

)
.

where B and V are the quantities defined in 2.2.2.
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Remark 2.4.1. Therefore, we obtain an upper bound on the excess risk by following the
excess risk decomposition in 2.2.2.

Remark 2.4.2. In the ridgeless setting, the similarity between the results of [TB20] and
[BLLT20] becomes more evident as the bounds become

B ≤ c

(
∥Σ1/2

k+1:pβ
∗
k+1:p∥22 + ∥Σ−1/2

1:k β∗
1:k∥22

(
λk+1rk(Σ)

n

)2
)
, and

V ≤ c

(
k

n
+

n

Rk(Σ)

)
.

Let us describe some of the main differences between Theorem 2.3.1 and Theorem
2.4.1 in the ridgeless setting. First of all, Tsigler et al. relax the independence condi-
tion on the data and focus instead on the condition number of the tail of the matrix
XX⊤ + λI , in an attempt to generalize the results of [BLLT20]. Then, they proceed to
show that the conditions given by Bartlett et al. make the assumption on the condi-
tion number hold with high probability. However, they do not provide compelling
evidence that their assumption on the condition number can be fulfilled in other in-
teresting regimes. Secondly, contrary to [BLLT20], whose main feat is the sharp bound
on the variance term, Tsigler et al. manage to additionally control the bias term in a
sharper way. Their bound relies upon the realization that the implicit feature space
decomposition into two components that takes place in the proof of Lemma 2.3.3 can
also be used to control the bias. As can be seen in Theorem 2.4.1, the upper bound
on the bias–which could potentially be dominated by the behavior of the norm of β∗

in [BLLT20]–now depends on two norms in terms of β∗
1:k and β∗

k+1:p. Furthermore,
these norms exploit the entanglement of the pair (Σ, β∗). This relationship, that is ab-
sent in [BLLT20], gives a richer picture of the phenomena at play. Moreover, the l2-
norm of β∗ that appears in [BLLT20] can be significant in the setting we examine, since
the dimension of the feature space is assumed to be large. Concerning the variance
term however, the result of [TB20] and [BLLT20] coincide. All things considered, from
our perspective, the two major contributions of Theorem 2.4.1 are the exploitation of
the feature space decomposition into a low-dimensional and a high-dimensional part
for both the bias and the variance, and the appearance of the relationship between the
covariance matrix and the true parameter.

Example 2.4.1. Let us build an example where the bias term in [TB20] is much better than the
bias term in [BLLT20] to illustrate the improvement made in [TB20]. Let β∗ = (1, . . . , 1)⊤,
ϵ ∈ (0, 1), Σ =diag(1, . . . , 1, ϵ, . . . , ϵ), and let k̃ denote the number of eigenvalues of Σ that
are equal to 1. Therefore, k∗ = k̃ since rk̃(Σ) = p− k ≳ n but rk̃−1(Σ) = (p− k)ϵ, and thus,
by taking ϵ small enough, we cannot have rk̃−1(Σ) ≳ n. We have that r0(Σ) = k∗ + (p −
k∗)ϵ, ∥β∗∥22 = p and ∥Σ∥op = 1. Therefore, we obtain the following bias term in Theorem 2.3.1,
as ϵ goes to 0.

∥β∗∥22∥Σ∥opmax

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

}
= p

k∗ + (p− k∗)ϵ

n
,

which tends to pk
∗

n
as ϵ goes to 0. However, in Theorem 2.4.1, we obtain the following bias
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term. (
∥Σ1/2

k+1:pβ
∗
k+1:p∥22 + ∥Σ−1/2

1:k β∗
1:k∥22

(
λ+

∑
i>k λi

n

)2
)

= (p− k∗)ϵ2 + k∗
( ϵ
n

)2
,

which tends to 0 as ϵ goes to 0.

2.4.2 Feature space decomposition

We decompose the feature space as Rp = V1:k ⊕ Vk+1:p according to the notations from
2.2.1 and analyze β̂1:k and β̂k+1:p separately. β̂1:k corresponds to a prediction component
whereas β̂k+1:p corresponds to an overfitting component. Indeed, it turns out that the
role of β̂1:k is to estimate the essential part of the true parameter given by β∗

1:k, while
the role of β̂k+1:p is more or less to fit to the noise. This is shown in Proposition 2.5.1 in
the next section. Moreover, we also go over the notion of implicit regularization that
is discussed in [TB20] in the next section as well.

2.5 The geometric viewpoint of Benign Overfitting

In this section, we look at the techniques and results introduced in [LS22]. This paper
restricts to the case of a design matrix X with independent centered Gaussian entries
and anisotropic covariance matrix Σ. In this context, it improves the main theorems
from [BLLT20], [TB20] (Theorems 2.3.1 and 2.4.1) and perhaps more importantly it pro-
vides a new geometric perspective on these results. The main result of [LS22] relies on
very different tools, namely Dvoretzky-Milman theorem and some type of restricted
isomorphy property.

2.5.1 Setup of the paper of Lecué et al.

We consider the now familiar linear regression problem in the overparametrized regime,
but this time with Gaussian assumptions on the data instead of the subgaussianity as-
sumed previously. That is, y = Xβ∗ + ξ, where X ∈ Rn×p is a Gaussian matrix with
i.i.d. N (0,Σ) row vectors, ξ ∼ N (0, v2ξI) is some independent Gaussian noise, β∗ ∈ Rp

is the unknown true parameter of the model, and p > n. We write

X = G(n×p)Σ1/2,

where G(n×p) is an n× p random matrix with i.i.d. N (0, 1) entries.
In the context of [LS22], as discussed in Lemma 2.2.1, the excess risk has the form

R(β̂) = ∥Σ1/2(β̂ − β∗)∥22.
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2.5.2 Feature space decomposition and self-induced regularization

According to [LS22, Proposition 3], we can split the minimum l2−norm interpolator as
follows.

Proposition 2.5.1. We have β̂ = β̂1:k + β̂k+1:p where

β̂1:k ∈ arg min
β1∈Rp

(
∥X⊤

k+1:p(Xk+1:pX
⊤
k+1:p)

−1(y −X1:kβ1)∥22 + ∥β1∥22
)

and (2.8)

β̂k+1:p = X⊤
k+1:p(Xk+1:pX

⊤
k+1:p)

−1(y −X1:kβ̂1:k). (2.9)

Proof. The minimum l2−norm interpolator is given by β̂ ∈ arg minβ∈Rp (∥β∥22 : Xβ = y).
Since for all β ∈ Rp, ∥β∥22 = ∥β1:k∥22 + ∥βk+1:p∥22, β̂ = β̂1:k + β̂k+1:p and

(β̂1:k, β̂k+1:p) ∈ arg min
(β1,β2)∈V1:k×Vk+1:p

(
∥β1∥22 + ∥β2∥22 : X1:kβ1 +Xk+1:pβ2 = y

)
= arg min

(β1,β2)∈Rp×Rp

(
∥β1∥22 + ∥β2∥22 : X1:kβ1 +Xk+1:pβ2 = y

)
.

For the last equality, one inequality is trivial since we search over a larger space, and
for the other inequality, suppose that there exists (β̂1, β̂2) /∈ V1:k × Vk+1:p for a contra-
diction. Without loss of generality, suppose that β̂1 /∈ V1:k, then

β̂1 = β̂′
1 + β̂′′

1 , where β̂′
1 ∈ V1:k, 0 ̸= β̂′′

1 ∈ Vk+1:p.

X1:kβ̂1 = G(n×p)Σ
1/2
1:k β̂1 = G(n×p)Σ

1/2
1:k β̂

′
1 +G(n×p)Σ

1/2
1:k β̂

′′
1 = G(n×p)Σ

1/2
1:k β̂

′
1. Therefore, using

β̂′
1 instead of β̂1, we obtain a solution to X1:kβ1 +Xk+1:pβ2 = y that has strictly smaller

l2−norm and we get a contradiction. Now, optimizing separately, first in β2 for a fixed
β1,

β̂k+1:p(β1) ∈ arg min
β2∈RP

(∥β2∥22 : Xk+1:pβ2 = y −X1:kβ1),

and a solution is given by X†
k+1:p(y −X1:kβ1) where X†

k+1:p denotes the Moore-Penrose
pseudoinverse of Xk+1:p which is given by X⊤

k+1:p(Xk+1:pX
⊤
k+1:p)

−1. Thus,

β̂k+1:p(β1) = X⊤
k+1:p(Xk+1:pX

⊤
k+1:p)

−1(y −X1:kβ1).

Optimizing in β1,

β̂1:k ∈ arg min
β1∈Rp

(
∥β1∥22 + ∥β̂k+1:p(β1)∥22

)
= arg min

β1∈Rp

(
∥β1∥22 + ∥X⊤

k+1:p(Xk+1:pX
⊤
k+1:p)

−1(y −X1:kβ1)∥22
)
,

and thus,

β̂k+1:p = β̂k+1:p(β̂1:k) = X⊤
k+1:p(Xk+1:pX

⊤
k+1:p)

−1(y −X1:kβ̂1:k).
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Remark 2.5.1. Proposition 2.5.1 has a deep meaning. It demonstrates how the solu-
tion to the minimum l2−norm interpolation problem decouples into two components
whose interpretations are different.
First of all, β̂1:k is the solution to a minimization problem that is reminiscent of ridge
regression but that does not quite coincide with it. Later, we formally see that β̂1:k ap-
proximately corresponds to a ridge estimator with regularization coefficient tr(Σk+1:p),
that is, β̂1:k is approximately a solution to

arg min
β1∈Rp

(
∥y −X1:kβ1∥22 + tr(Σk+1:p)∥β1∥22

)
This formalization is achieved through the use of Dvoretzky-Milman theorem, which
in this case allows us to say that with high probability, under some conditions on the
the number of observations n and the covariance matrix Σ, ∥X⊤

k+1:p(Xk+1:pX
⊤
k+1:p)

−1·∥2
is isomorphic (that is, equivalent up to absolute constants) to tr(Σk+1:p)

−1/2∥·∥2. This
ridge regression appearing seemingly out of nowhere is an incarnation of the so-called
self-regularization property of the estimator β̂, (see [BMR21]). The fact that we can
think of β̂1:k as a ridge estimator means we have at our disposal many tools to find the
solution, as the regularized least squares problem has been extensively studied and
is solvable in a variety of settings. In 2.5.5, we use classical techniques to arrive at a
solution.
Secondly, β̂k+1:p corresponds to the solution to the ordinary linear regression prob-
lem, as an estimator of y − X1:kβ̂1:k. Notice that y − X1:kβ̂1:k essentially corresponds
to the noise, because X1:kβ̂1:k is an estimator of y as k is chosen in a way that implic-
itly states that the data is essentially only k−dimensional, that is, most of the energy
of the parameter resides in V1:k. This reflection leads to the following interpretation:
β̂k+1:p perfectly fits the noise and hence corresponds to the overfitting component of
the estimator β̂. Therefore, we end up with a solution β̂ to the linear regression prob-
lem which decouples into two parts; the first one behaves like a ridge estimator–and
acts as a prediction of the true parameter β∗–while the second one behaves like an
overfitting component.

Excess risk decomposition

Following the feature space decomposition, we make the excess risk decomposition

∥Σ1/2(β̂ − β∗)∥22 = ∥Σ1/2
1:k (β̂1:k − β∗

1:k)∥22 + ∥Σ1/2
k+1:p(β̂k+1:p − β∗

k+1:p)∥22.

The plan for the remainder of the section is to present the main theorem of [LS22]
together with a sketch of its proof. In the latter, we display a proof technique to find
solutions to regularized linear regression problems. We start by introducing the central
theorems used by Lecué et al. to derive their main result.

2.5.3 Dvoretzky-Milman theorem and restricted isomorphy property

Dvoretzky-Milman theorem was initially a statement about the existence of Euclidean
sections of convex bodies. More specifically, it was about finding the largest dimension
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guaranteeing the existence of an Euclidean section in a fixed convex body K, say in
Rp. Roughly speaking, an Euclidean section of a convex body K ⊂ Rp is a subset of K
that is the intersection between a subspace of Rp and K, and that approximately looks
like a Euclidean ball. The largest dimension for this to hold is called the Dvoretzky
dimension.

Definition 2.5.1. Let ∥·∥ be a norm on Rp and denote by B∗ the dual ball with respect
to the norm ∥·∥ (see B.1). The Dvoretzky dimension d∗(B) is defined as follows.

d∗(B) :=

(
w(B∗)

diam(B∗, lp2)

)2

,

where diam(B∗, lp2) := sup(∥v∥2 : v ∈ B∗) and w(B∗) is the Gaussian width of B∗ (see
C.2).

Remark 2.5.2. Notice that this notion of Dvoretzky dimension is analogous to the no-
tion of stable dimension discussed in C.2, and thus the intuition built for stable dimen-
sion carries over.

Example 2.5.1 (Dvoretzky dimension of an ellipsoid). Given Σ ∈ Rp×p a positive semi-
definite (PSD) matrix and the unit l2−ball Bp

2 ⊂ Rp, consider the ellipsoid Σ−1/2Bp
2 = {v ∈

Rp : ∥Σ1/2v∥ ≤ 1}. Then the Dvoretzky-Milman dimension of Σ−1/2Bp
2 can be bounded as

follows.
tr(Σ)

4∥Σ∥op
≤ d∗(Σ

−1/2Bp
2) ≤

tr(Σ)

∥Σ∥op
.

Proof. Fist of all,

diam((Σ−1/2Bp
2)

∗, lp2) = diam(Σ1/2Bp
2 , l

p
2) =

√
λ1 =

√
∥Σ∥op.

Secondly,

w((Σ−1/2Bp
2)

∗) = w(Σ1/2Bp
2) = E sup

v∈Bp2
⟨Σ1/2v, g⟩ = E sup

v∈Bp2
⟨v,Σ1/2g⟩

= E∥Σ1/2g∥2 ≤
√

E∥Σ1/2g∥22 =
√

tr(Σ),

where g ∼ N (0, I) and we use Jensen’s inequality.
It can also be shown that E∥Σ1/2g∥2 ≥

√
tr(Σ)/2 but this requires tools that are outside

the scope of our exposition.
Assembling everything together gives us the required bound.

Remark 2.5.3. Notice that the quantity

tr(Σ)

∥Σ∥op

coincides with the effective rank r0(Σ) introduced in the review of the paper [BLLT20].
Therefore, we can now give a new meaning to the condition rk(Σ) ≳ n corresponding
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to the interpretation of Dvoretzky-Milman in terms of Euclidean sections. This con-
dition is equivalent to asking that the Dvoretzky dimension is larger than n (up to a
constant), and hence, that there exists a Euclidean section of that dimension of the el-
lipsoid Σ

−1/2
k+1:pB

p
2 . This means that a certain projection of this ellipsoid in lower dimen-

sional space looks like a Euclidean ball. Moreover, the statement of Dvoretzky-Milman
we give here also shows that we can find such a projection with high probability, and
thus that this phenomenon happens most of the time. This captures geometrically the
behavior of the random matrices XX⊤ and X⊤(XX⊤)−1 that we care about in the linear
regression problem, as demonstrated in Corollary 2.5.3 below.

The statement of Dvoretzky-Milman we present follows a more modern viewpoint,
but is equivalent to the original statement. It is a probabilistic statement that empha-
sizes an important caveat of Dvoretzky-Milman theorem shared by several results of
the same flavour, like Johnson-Lindenstrauss lemma (see for example [Ver18, Theo-
rem 5.3.1]); even though the existence of such an Euclidean section is guaranteed, we
don’t know of any deterministic way to find it, and thus we resort to the use of prob-
abilistic methods. These can often be stated in terms of random matrices that can be
interpreted as random projections of vectors onto lower dimensional subspaces, and
that is the case here.
According to [LS22, Theorem 3],

Theorem 2.5.2 (Dvoretzky-Milman). Let ∥·∥ be a norm on Rp. Denote by G := G(n×p) the
n× p matrix with i.i.d. N (0, 1) Gaussian entries. There are absolute constants κDM ≤ 1 and
c0 such that the following holds. Assume that n ≤ κDMd∗(B), then with probability at least
1− exp(−c0d∗(B)), for every v ∈ Rn,

1√
2
∥v∥2w(B∗) ≤ ∥G⊤v∥ ≤

√
3

2
∥v∥2w(B∗).

The proof of Theorem 2.5.2 can be found in [Ver18] but must be adapted to hold
with high probability.

Corollary 2.5.3. Given G defined as in Theorem 2.5.2 and Γ ∈ Rp×p a semi-definite matrix,
let X2 := GΓ1/2. Assume that n ≤ κDMd∗(Γ

−1/2Bp
2), then with probability at least 1 −

exp(−c0d∗(Γ
−1/2Bp

2)), ∥∥X2X⊤
2 − w(Γ1/2Bp

2)
2I
∥∥
op

≤ 1

2
w(Γ1/2Bp

2)
2,

which implies that√
s1(X2X⊤

2 ) = s1(X2) ≤
√
3/2 w(Σ1/2Bp

2) ≤
√

3 tr(Γ)/2√
sn(X2X⊤

2 ) = sn(X2) ≥ 1/
√
2 w(Σ1/2Bp

2) ≥
√
tr(Γ)/2,

and
2√
tr(Γ)

≥ s1(X⊤
2 (X2X⊤

2 )
−1) ≥ sn(X⊤

2 (X2X⊤
2 )

−1) ≥

√
2

3 tr(Γ)
,

where for any matrix M, si(M) denotes its i−th singular value.
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Proof. The proof is an immediate consequence of Theorem 2.5.2 together with the
bound on the Dvoretzky dimension of an ellipsoid detailed above in Example 2.5.1.

Remark 2.5.4. In particular, Corollary 2.5.4 allows us to express β̂1:k, the prediction
component of the minimum l2−norm interpolator, as a ridge estimator since we get
that, for all v ∈ Rn,

∥X⊤
k+1:p(Xk+1:pX

⊤
k+1:p)

−1v∥2 ≈ (tr (Σk+1:p))
−1/2 ∥v∥2,

as previously discussed in Remark 2.5.1.

The other tool we need to understand and prove the main theorem of [LS22] is the
following. According to [LS22, Corollary 1],

Theorem 2.5.4 (Restricted Isomorphy Property). There are absolute constants 0 < κiso <
1, c0, and c1 such that the following holds. If Γ is a semi-definite p × p matrix of rank k such
that k ≤ κison, then for X1 = G(n×p)Γ1/2, with probability at least 1 − c0 exp(−c1n), for all
v ∈ range(Γ),

1√
2
∥Γ1/2v∥2 ≤ ∥X1v∥2 ≤

√
3

2
∥Γ1/2v∥2.

Remark 2.5.5. The proof of Theorem 2.5.4 can be obtained by using an ϵ−net argument.

2.5.4 Main theorem

We state the main theorem of Lecué et al., in [LS22] and discuss with varying degrees
of details its proof as well as the tools that are required to understand its assumptions
and proof. According to Lecué et al., [LS22, Theorem 4],

Theorem 2.5.5. There are absolute constants c0, c1 and C0 such that the following holds. We
assume that n ≳ log p and that there exists k ≤ κison such that n ≤ κDMd∗(Σ

−1/2
k+1:pB

p
2). We

also assume that λ1n ≥ tr (Σk+1:p). Then the following holds for all such k. We define

J1 =

{
j ∈ [k] : λj ≥

tr(Σk+1:p)

n

}
, J2 =

{
j ∈ [k] : λj <

tr(Σk+1:p)

n

}
and Σ

−1/2
1,thres := UΛ

−1/2
1,thresU

⊤ where U is the orthogonal matrix appearing in the SVD of Σ and

Λ
−1/2
1,thres := diag

((
λ1 ∨

tr (Σk+1:p)

n

)−1/2

, . . . ,

(
λk ∨

tr (Σk+1:p)

n

)−1/2

, 0, . . . , 0

)

With probability at least 1− c0 exp
(
−c1

(
|J1|+ n

(∑
j∈J2 λj

)
/ (tr (Σk+1;p))

))
,

∥∥∥Σ1/2
(
β̂ − β∗

)∥∥∥
2
≲ □+ vξ

√
n tr

(
Σ2
k+1:p

)
tr (Σk+1:p)

+
∥∥∥Σ1/2

k+1:pβ
∗
k+1:p

∥∥∥
2
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where

□ = C0max

vξ

√
|J1|
n

, vξ

√ ∑
j∈J2 λj

tr (Σk+1;p)
,
∥∥∥Σ1/2

k+1:pβ
∗
k+1:p

∥∥∥
2
,
∥∥∥Σ−1/2

1,thresβ
∗
1:k

∥∥∥
2

tr (Σk+1:p)

n

 .

Remark 2.5.6. As discussed and proven in [LS22], the best feature space decomposition
Rp = VJ1 ⊕VJ2 is given by J1 = {1, . . . , k}, J2 = {k+1, . . . , p}, that is, Rp = V1:k⊕Vk+1:p.
However, Lecué et al. show that similar results still hold for any decomposition into
two subspaces of eigenvectors. Moreover, it is also shown that the best k is given
by k∗ defined in Theorem 2.3.1. This means that the best feature decomposition only
depends on Σ and not on β∗. In that case, Theorem 2.5.5 resembles the earlier results
Theorem 2.3.1 and Theorem 2.4.1.

Remark 2.5.7. The result also holds for the case when λ1n < tr (Σk+1:p), but in this case
the quantity □ is equal to something else.

□ = C0max

{
vξ

√
tr (Σ1:k)

tr (Σk+1:p)
,

√
nλ1

tr (Σk+1:p)

∥∥∥Σ1/2
k+1:pβ

∗
k+1:p

∥∥∥
2
, ∥β∗

1:k∥2

√
tr (Σk+1:p)

n

}

However, this case must be thought of as pathological for us because it is the case
where the ridge regularization coefficient tr (Σk+1:p) is so large that the regulariza-
tion term dominates the least squares term ∥y − X1:kβ1:k∥22. This leads the general-
ization error to come from a mixture of errors in the prediction component β∗

1:k and
the overfitting component β∗

k+1:p, to which the prediction component contributes sig-
nificantly.This is not the regime we are interested in understanding.

Theorem 2.5.5 leads to a more refined definition of the benign overfitting regime
(in the context of Theorem 2.5.5).

Definition 2.5.2. Overfitting is benign for the pair (Σ, β∗) if there exists k∗ = o(n) such
that

λk∗n ≤ tr(Σk∗+1:p), λ1n ≥ tr(Σk∗+1:p) and n tr(Σ2
k∗+1:p) = o((tr(Σk∗+1:p))

2),

∥Σ1/2
k∗+1:pβ

∗
k∗+1:p∥2 = o(1) and ∥Σ−1/2

1:k∗ β∗
1:k∗∥2

tr(Σk∗+1:p)

n
= o(1).

The notable addition of this definition is that it depends not only on the covariance
matrix Σ as was the case in the definitions provided in [BLLT20] and [TB20], but also
on the true parameter β∗.

Let us now discuss the main differences of the approach in [LS22] with respect to
what is done in [BLLT20] and [TB20]. The main distinction is the fact that Theorem
2.5.5 does not rely on the bias-variance decomposition that is made in both [BLLT20]
and [TB20], but instead relies on a splitting into a prediction component and an overfit-
ting component. Also, the fact that the phenomenon of benign overfitting depends on
both Σ and β∗ is an idea that is not captured in the other two previous papers. Further-
more, Theorem 2.5.5 shows that as soon as we are in the regime of benign overfitting,
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we will see it happen with high probability. Lastly, although restricted to the case of
anisotropic Gaussian design matrix, the results obtained by Lecué et al. may be gen-
eralizable to other regimes. Indeed, they mainly rely on Dvoretzky-Milman theorem,
a result of geometric flavor that can be extended to random matrices whose entries
come from other distributions. However, the results from Bartlett et al. and Tsigler et
al. cannot be generalized in the same way because their proofs entirely rely on certain
subgaussian assumptions.

2.5.5 Proof of the main theorem

We provide a sketch of the proof to get a big picture of how the main arguments fit
together.
The goal is to control the square root of the excess risk which is given by the quantity

∥Σ1/2(β̂ − β∗)∥2.

Following the excess risk decomposition in 2.5.2, the proof consists of two main
parts; the first part is concerned with controlling ∥Σ1/2

1:k (β̂1:k − β∗
1:k)∥2 while the sec-

ond consists in controlling ∥Σ1/2
k+1:p(β̂k+1:p − β∗

k+1:p)∥2. In both parts, the control will be
achieved on a certain high probability event where Dvoretzky-Milman theorem and a
restricted isomorphy property hold simultaneously.
To simplify notations, we define β1 := β1:k and β2 := βk+1:p for all β ∈ Rp such that
β = β1:k + βk+1:p, where β1:k ∈ V1:k and βk+1:p ∈ Vk+1:p, and X1 := X1:k, X2 := Xk+1:p.
We also use the notation Σ1 := Σ1:k,Σ2 := Σk+1:p.

Bound on the prediction component

This part is devoted to find a high probability upper bound on the prediction compo-
nent. First of all, we place ourselves on a high probability event where we have strong
control over the norms of X⊤

2 v for all v ∈ Rn and X1β1 thanks to Theorems 2.5.2 and
2.5.4 as follows.
Let Ω0 be the event onto which the following hold.

1. for all v ∈ Rn, 1
2
√
2

√
tr(Σ2)∥v∥2 ≤ ∥X⊤

2 v∥2 ≤ 3
2

√
tr(Σ2)∥v∥2,

2. for all β1 ∈ V1:k,
1
2
∥Σ1/2

1 β1∥2 ≤ 1√
n
∥X1β1∥ ≤ 3

2
∥Σ1/2

1 β1∥2.

By Theorems 2.5.2 and 2.5.4, if n ≤ κDMd∗(Σ
−1/2
2 Bp

2) and k ≤ κison, then P [Ω0] ≥
1− c0 exp(−c1n).
Let A := X⊤

2 (X2X
⊤
2 )

−1, then by Proposition 2.5.1,

β̂1 ∈ arg min
β1∈V1:k

(
∥A(y −X1β1)∥22 + ∥β1∥22

)
, (2.10)

because the minimizer β̂1 actually lives in V1:k ⊂ Rp.
Now let us give an overview of what the proof technique to bound ∥Σ1/2

1 (β̂1 − β∗
1)∥2

consists of. We define a certain convex function L of β1, whose minimum is attained
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at β∗
1 and that admits a ‘quadratic + multiplier + regularization’ decomposition. Then

the goal is to show that necessarily, β̂1 lives in a ball around β∗
1 with respect to a certain

norm that tells us something about ∥Σ1/2
1 (β̂1 − β∗

1)∥2 and ∥β̂1 − β∗
1∥2. In order to do

so, we assume that β1 lives outside this ball and show that this β1 does not attain the
minimum of L. Therefore, by definition of β̂1, this β1 cannot be β̂1, and that implies
that β̂1 lives in the ball around β∗. Coincidentally, this yields a bound on ∥Σ1/2

1 (β̂1 −
β∗
1)∥2 thanks to the careful choice of norm. The delicate part is showing that β1 does

not attain the minimum of L for all β1 outside the ball centered around β∗
1 ; this part

actually splits into two distinct cases that embody two different behaviors and that
must be treated distinctly. Let us now define the function L, its decomposition, as well
as the norm whose ball we want to show β̂1 belongs to.

Definition 2.5.3. Let L : Rp → R, β1 7→ L(β1) with

L(β1) := ∥A(y −X1β1)∥22 + ∥β1∥22 − (∥A(y −X1β
∗
1)∥22 + ∥β∗

1∥22).

It can be rearranged to obtain the decomposition

L(β1) = ∥(X2X
⊤
2 )

−1/2X1(β1−β∗
1)∥22+2⟨X⊤

1 (X2X
⊤
2 )

−1(X2β
∗
2+ξ)−β∗

1 , β1−β∗
1⟩+∥β1−β∗

1∥22,
(2.11)

where ⟨·, ·⟩ denote the usual inner product.

Remark 2.5.8. L(β̂1) is the empirical excess risk of the estimator β̂1 for the ridge regres-
sion problem (2.10). The decomposition (2.11) enables us to simultaneously control
∥Σ1/2

1 (β̂1 − β∗
1)∥2 and ∥β̂1 − β∗

1∥2, as is argued below. More precisely, we use it to prove
that with high probability ∥Σ1/2

1 (β̂1 − β∗
1)∥2 ≤ □ and ∥β̂1 − β∗

1∥2 ≤ △ where □ and △
are real-valued parameters to be determined later.

Definition 2.5.4. For all β1 ∈ V1:k, let

∥β1∥m := max

(
∥Σ1/2

1 β1∥2
□

,
∥β1∥2
△

)
.

Moreover, let Bm denote the intersection between V1:k and the unit ball with respect to
∥·∥m, that is,

Bm = {β1 ∈ V1:k : ∥β1∥m ≤ 1}.

Therefore, with Definition 2.5.4, we wish to prove that β̂1 ∈ β∗
1+Bm, that is, β̂1 lives

in the unit ball with respect to our ‘max norm’ centered at β∗
1 . In order to do so, we

show that if a vector β1 ∈ V1:k is such that β1 /∈ β∗
1 + Bm, then necessarily, L(β1) > 0.

Note that by definition of L, L(β̂1) ≤ 0 and thus proving that L(β1) > 0 shows that
β̂1 ∈ β∗

1 + Bm. By a homogeneity argument that we do not detail here, we can restrict
our attention to vectors β1 that live on the boundary β∗+∂Bm. Hence, by the definition
of the norm ∥·∥m, the analysis must be split into two cases, namely,

1. ∥Σ1/2
1 (β1 − β∗

1)∥2 = □ and ∥β1 − β∗
1∥2 ≤ △,

2. ∥Σ1/2
1 (β1 − β∗

1)∥2 ≤ □ and ∥β1 − β∗
1∥2 = △.
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Therefore, our goal is to show that in both cases, L(β1) > 0. Let us give names to the
different quantities in the decomposition of L. Let

Q(β1) := ∥(X2X
⊤
2 )

−1/2X1(β1 − β∗
1)∥22,

M(β1) := 2⟨X⊤
1 (X2X

⊤
2 )

−1(X2β
∗
2 + ξ)− β∗

1 , β1 − β∗
1⟩,

C(β1) := ∥β1 − β∗
1∥22.

Notice that only M can take negative values, and thus to show that L(β1) > 0, we
show that either Q(β1) > |M(β1)| (which holds in case 1.), or C(β1) > |M(β1)|(which
holds in case 2.).
For all β1 ∈ β∗

1 + ∂Bm, we have the following control over M.

|M(β1)| ≤ 2 sup
v∈Bm

∣∣⟨X⊤
1 (X2X

⊤
2 )

−1(X2β
∗
2 + ξ)− β∗

1 , v⟩
∣∣ .

Then, by using some equivalence of norms, and the fact that for any symmetric matrix
Γ the dual norm of ∥Γ·∥ is given by ∥Γ−1·∥ (see Example B.1.3), we can get the following
bound.

|M(β1)| ≤ 2
√
2
(
∥Σ̃−1/2

1 X⊤
1 (X2X

⊤
2 )

−1X2β
∗
2∥2 + ∥Σ̃−1/2

1 X⊤
1 (X2X

⊤
2 )

−1ξ∥2 + ∥Σ̃−1/2
1 β∗

1∥2
)
,

(2.12)
where Σ̃

1/2
1 := U Λ̃

1/2
1 U⊤ and

Λ̃
1/2
1 := diag

(
max

(√
λ1

□
,
1

△

)
, . . . ,max

(√
λk
□

,
1

△
, 0, . . . , 0

))
.

Now we present two Lemmas which are used to control the first two terms of
(2.12) by using classical concentration tools along with Dvoretzky-Milman theorem
by placing ourselves on the high probability event Ω0.

Lemma 2.5.6. On the event Ω0, the following holds with probability at least 1−c0 exp(−c1n).

∥Σ̃−1/2
1 X⊤

1 (X2X
⊤
2 )

−1X2β
∗
2∥2 ≲

nσ(□,△)

tr(Σ2)
∥Σ1/2

2 β∗
2∥,

where

σ(□,△) :=

{
□ if △

√
λ1 ≥ □,

△
√
λ1 otherwise.

Proof. We provide a proof sketch to show how we can use Theorem 2.5.2 and Theorem
A.1.2 to control the quantity of interest.
Bernstein’s inequality gives us that with probability at least 1− c0 exp(−c1n),

∥X2β
∗
2∥2 ≤

3
√
n

2
∥Σ1/2

2 β∗
2∥2. (2.13)

To simplify notations, we show that ∥Xβ∥2 ≤ 3
√
n

2
∥Σ1/2β∥2 for any β ∈ Rp instead. Let

Xi ∼ N (0,Σ) denote the i−th row of X. Also note that

∥Xβ∥2 ≤
3
√
n

2
∥Σ1/2β∥2 ⇔

1

n
∥Xβ∥22 ≤

9

4
∥Σ1/2β∥22.
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Since ⟨Xi, β⟩ ∼ N (0, β⊤Σβ) = N (0, ∥Σ1/2β∥22)

1

n
∥Xβ∥22 =

1

n

n∑
i=1

⟨Xi, β⟩2 =
1

n

n∑
i=1

∥Σ1/2β∥22g2i ,

where gi ∼ N (0, 1) are i.i.d. standard Gaussian random variables. Therefore,

1

n
∥Xβ∥22 − E[∥Xβ∥22] =

1

n

n∑
i=1

(⟨Xi, β⟩2 − E[⟨Xi, β⟩2]) =
1

n

n∑
i=1

(∥Σ1/2β∥22g2i − ∥Σ1/2β∥22)

=
1

n
∥Σ1/2β∥22

n∑
i=1

(g2i − 1).

Notice that g2i − 1 is a subexponential random variable (see Lemma A.1.1). Now we
want to show that with high probability,

1

n
∥Xβ∥22 − ∥Σ1/2β∥22 =

1

n
∥Xβ∥22 − E[∥Xβ∥22] ≤

5

4
E[∥Xβ∥22] =

5

4
∥Σ1/2β∥22.

This is equivalent to showing that with high probability,

1

n

n∑
i=1

(g2i − 1) ≤ 5

4
,

which comes immediately from Bernstein’s inequality thanks to the fact that g2i − 1 are
independent subexponential random variables.
Now that we understand how (2.13) is proven, we can use the fact that we are on the
event Ω0 to get the following.

∥Σ̃−1/2
1 X⊤

1 ∥op = ∥X1Σ̃
−1/2
1 ∥op ≤

3
√
n

2
∥Σ1/2

1 Σ̃
−1/2
1 ∥op,

where the equality comes from the fact that the operator norm of a matrix is equal to
the operator norm of its transpose and the inequality comes from the following.
By definition of the operator norm, there exists β1 ∈ V1:k such that,

∥X1Σ̃
−1/2
1 ∥op = ∥X1β1∥2 ≤

3
√
n

2
∥Σ1/2

1 β1∥2 ≤
3
√
n

2
∥Σ1/2

1 Σ̃
−1/2
1 ∥op,

where the inequality comes from the isomorphic assumption on X1.
Furthermore, since X2 satisfies the Dvoretzky-Milman property, by Theorem 2.5.3,

∥(X2X
⊤
2 )

−1∥op ≤ 4(tr(Σ2))
−1.

The end of the proof consists in putting all these high probability bounds together to
obtain the result.

∥Σ̃−1/2
1 X1(X2X

⊤
2 )

−1X2β
∗
2∥2 ≤ ∥Σ̃−1/2

1 X⊤
1 ∥op∥(X2X

⊤
2 )

−1∥op∥X2β
∗
2∥2

≲
n

tr(Σ2)
∥Σ1/2

1 Σ̃
−1/2
1 ∥op∥Σ1/2

2 β∗
2∥2 =

n

tr(Σ2)
∥Σ1/2

2 β∗
2∥2.
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Lemma 2.5.7. On the event Ω0, the following holds with high probability.

∥Σ̃−1/2
1 X⊤

1 (X2X
⊤
2 )

−1ξ∥2 ≲
√
nvξ

tr(Σ2)

√
|J1|□2 +△2

∑
j∈J2

λj,

where

J1 := {j ∈ {1, . . . k} : λj ≥ (□/△)2} and J2 := {1, . . . k}\J2 = {j ∈ {1, . . . k} : λj < (□/△)2}.

Proof. We also provide a proof sketch to show how the classical Borell-TIS theorem
(Theorem C.1.1) can be used to provide the bounds we want. Let us use Borell-TIS
theorem to show that for all t > 0, conditionally on X, with probability (with respect
only to the noise ξ) at least 1− exp(−t/2),

∥Σ̃−1/2
1 X⊤

1 (X2X
⊤
2 )

−1ξ∥2 ≤ vξ

(√
tr(DD⊤) +

√
t∥D∥op

)
, (2.14)

where D := Σ̃
−1/2
1 X⊤

1 (X2X
⊤
2 )

−1. Indeed,

∥Σ̃−1/2
1 X⊤

1 (X2X
⊤
2 )

−1ξ∥2 = ∥Dξ∥2 = sup
λ∈Sk−1

⟨Dξ, λ⟩ = sup
λ∈Sk−1

⟨ξ,D⊤λ⟩,

where Sk−1 denotes the (k − 1)−dimensional sphere, that is, Sk−1 := {λ ∈ Rk−1 :
∥λ∥2 = 1}. Then, Gλ := ⟨ξ,D⊤λ⟩ for all λ ∈ Sk−1 form a centered Gaussian process.
Note that here, the index set is not countable as stipulated in Theorem C.1.1, however
the theorem actually holds for a much broader class of index sets that contains Sk−1.
Now,

E sup
λ∈Sk−1

Gλ = E sup
λ∈Sk−1

⟨Dξ, λ⟩ = E∥Dξ∥2 ≤
(
E∥Dξ∥22

)1/2
=
√

E tr(ξ⊤D⊤Dξ) =
√
tr(D⊤DE[ξξ⊤]) = vξ

√
tr(DD⊤),

where we successively use Jensen’s inequality and the linear and circular properties
of the trace. Moreover,

σ2 := sup
λ∈Sk−1

E⟨ξ,D⊤λ⟩2 = sup
λ∈Sk−1

v2ξ

n∑
i=1

(D⊤λ)2i = sup
λ∈Sk−1

v2ξ∥D⊤λ∥22 = v2ξ∥DT∥2op = v2ξ∥D∥2op.

Plugging everything in Theorem C.1.1, for r = vξ∥D∥op
√
t yields that

P

(
sup

λ∈Sk−1

Gλ − E sup
λ∈Sk−1

Gλ ≤ r

)
≥ 1− exp(−r2/(2σ2)) = 1− exp(−t/2),

which gives

P
(
∥Dξ∥2 ≤ vξ

(√
t∥D∥op +

√
tr(DD⊤)

))
≥ 1− exp(−t/2).

Now that we have (2.14), the only thing that remains is to bound tr(DD⊤) and ∥D∥op.
For that, we can use the fact that we are on the event Ω0, to bound these quantities in a
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way that is analogous to what is done in the proof of Lemma 2.5.6. Here we just write
down the bounds we get.

tr(DD⊤) ≲

√
n

tr(Σ2)

√
|J1|□2 +△2

∑
j∈J2

λj and ∥D∥op ≲
√
nσ(□,△)

tr(Σ2)
.

Then to conclude the proof, there only remains to take the right parameter t.

Now that we have both Lemma 2.5.6 and Lemma 2.5.7 available to control |M(β1)|,
what remains to do is to choose △ and □ to ensure that, in case 1., Q(β1) > |M(β1)|,
and in case 2., C(β1) > |M(β1)|. This choice of parameters △ and □ relies again on
being on the event Ω0 to control Q(β1) and C(β1) in a way that is similar to what is
done to control the various quantities in the proof of Lemma 2.5.6 and we do not go
into the details, since they do not contain any deep insight. One thing that is worth
mentioning is that to constrain the choice of □ and △ further, we first fix □, and then
choose △ so that □/△ =

√
tr(Σ2)/n.

Bound on the overfitting component

The first thing is to write the crude upper bound

∥Σ1/2
2 (β̂2 − β∗

2)∥2 ≤ ∥Σ1/2
2 β̂2∥2 + ∥Σ1/2

2 β∗
2∥2, (2.15)

which indicates that we have no ambition to approximate β∗
2 by β̂2, due to the fact that

β̂2 is the minimum l2-norm interpolator of X2β
∗
2 + ξ, which we interpret as noise. The

quantity ∥Σ1/2
2 (β̂2 − β∗

2)∥2 is the price we pay for overfitting the data.
The strategy is more straightforward than for the prediction component. Neverthe-
less, it similarly relies on bounding a decomposition of ∥Σ1/2

2 β̂2∥2 with high probabil-
ity. This decomposition is the following. Using the closed form solution of β̂2 from
Proposition 2.5.1, and denoting X⊤

2 (X2X
⊤
2 )

−1 by A,

∥Σ1/2
2 β̂2∥2 = ∥Σ1/2

2 A(y −X1β̂1)∥2 = ∥Σ1/2
2 A(X1β

∗
1 +X2β

∗
2 + ξ −X1β̂1)∥2 (2.16)

≤ ∥Σ1/2
2 AX1(β

∗
1 − β̂1)∥2 + ∥Σ1/2

2 AX2β
∗
2∥2 + ∥Σ1/2

2 Aξ∥2. (2.17)

Our goal is now to control the three quantities appearing in (2.17) separately. First
of all, we place define the high probability event Ω1 as the event onto which for all
v ∈ Rn,

∥Σ1/2
2 X⊤

2 v∥2 ≤ 6

(√
tr(Σ2

2) +
√
n∥Σ2∥op

)
∥v∥2.

It follows from a result that is similar to Dvoretzky-Milman theorem that Ω1 holds
with probability at least 1 − exp(−n) (see [LS22, Proposition 2]). For the remainder
of the proof sketch of the bound on the overfitting component, we place ourselves
on the high probability event Ω0 ∩ Ω1 where we have access to the same inequalities
as in the proof of the bound of the prediction component, on top of the control over
∥Σ1/2

2 X⊤
2 v∥2. Without going into the algebraic details, this yields

∥Σ1/2
2 AX1(β

∗
1 − β̂1)∥2 ≲

(√
tr(Σ2

2) + n∥Σ2∥op
)

tr(Σ2)
∥Σ1/2

1 (β∗
1 − β̂1)∥2. (2.18)
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Moreover, as shown in Lemma 2.5.6,

∥X2β
∗
2∥2 ≤

3
√
n

2
∥Σ1/2

2 β∗
2∥2,

holds with high probability by Bernstein’s inequality, which yields that the following
holds with high probability.

∥Σ1/2
2 AX2β

∗
2∥2 ≲

(√
tr(Σ2

2) +
√
n∥Σ2∥op

)
tr(Σ2)

∥Σ1/2
2 β∗

2∥2. (2.19)

Finally, using Borell-TIS theorem as in Lemma 2.5.7, we have that for all t > 0,

∥Dξ∥2 ≤ vξ

(√
tr(DD⊤) +

√
t∥D∥op

)
, (2.20)

holds with probability at least 1−exp(−t/2), where D := Σ
1/2
2 A. Then in a similar fash-

ion as for Lemma 2.5.7,
√

tr(DD⊤) and ∥D∥op can be bounded with high probability,
thanks to Bernstein’s inequality and Dvoretzky-Milman theorem, as follows.

tr(DD⊤) ≲
n tr(Σ2

2)

(tr(Σ2))2
and ∥D∥op ≲

1

tr(Σ2)

(√
tr(Σ2

2) +
√
n∥Σ2∥op

)
.

By assembling the three bounds (2.18), (2.19), and (2.20), we get the bound on ∥Σ1/2
2 (β̂2−

β∗
2)∥2.

End of proof of Theorem 2.5.5

The only thing that remains is to put the bounds on the prediction component and the
overfitting components together, and to choose a suitable parameter k for the feature
space decomposition, as well as to choose the right parameter t in (2.20).
We choose parameter k such that it satisfies

n ≤ tr(Σ2)

∥Σ2∥op
,

which makes Theorem 2.5.2 hold by the bound on Dvoretzky dimension of the el-
lipsoid given in Example 2.5.1. In particular,

√
n tr(Σ2

2) ≤ tr(Σ2). Furthermore, by
choosing t = n tr(Σ1)/ tr(Σ2), we get the result of Theorem 2.5.5, namely

∥∥∥Σ1/2
(
β̂ − β∗

)∥∥∥
2
≲ □+ vξ

√
n tr

(
Σ2
k+1:p

)
tr (Σk+1:p)

+
∥∥∥Σ1/2

k+1:pβ
∗
k+1:p

∥∥∥
2
. (2.21)

Remark 2.5.9. By choosing t differently in the pathological case mentioned in Remark
2.5.7, we recover the form □ must take in that case.
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Chapter 3

Towards a general treatment of Benign
Overfitting

This chapter is devoted to the presentation of tentative results towards a generaliza-
tion of the benign overfitting analysis in the context of minimum lq−norm interpola-
tors, for q ∈ [1, 2) ∪ (2,+∞]. It mainly consists in an effort of generalization of the
key results of [LS22] for the lq−norm. The main difficulties of this approach are the
absence of a closed-form solution for the minimum lq−norm interpolator, as well as
the identification of the best entanglement of (Σ, β) in an optimal basis. To circumvent
the first difficulty, we make use of Dvoretzky-Milman theorem to find an approximate
expression of the minimum lq−norm interpolator. Concerning the second difficulty,
we do not address it but we try to consider an unspecified basis as much as possible.
We also specifically look at the canonical basis and the basis formed by the eigenvalues
of the covariance matrix Σ.

In the case of the lq−norm, for q ∈ [1,∞], q ̸= 2, the feature space decomposition
cannot be done so easily because we do not have access to the Pythagorean theorem.
What we can do however, is the following decomposition.

∥β∥qq =
p∑
i=1

|βi|q =
k∑
i=1

|βi|q +
p∑

i=k+1

|βi|q = ∥P1:kβ∥qq + ∥Pk+1:pβ∥qq, (3.1)

where P1:k is defined to be the orthogonal projection onto the first k vectors of the
canonical basis, and Pk+1:p is the orthogonal projection onto the last p − k vectors of
the canonical basis. However, one major caveat of this approach is that our split no
longer occurs along the eigenvectors of the covariance matrix. Another idea would
be to assume β is written in the eigenbasis already. In that case, we would obtain the
same decomposition as in equation (3.1) but the split would be performed along the
eigenvectors of the covariance matrix. In what follows, as long as we can afford to, we
assume that P1:k and Pk+1:p are orthogonal projection matrices that satisfy the relation
(3.1), without specifying their form.
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Notations

We denote P1:kβ by β1:k and Pk+1:pβ by βk+1:p, and in a similar way to what is done in
the previous chapter, we write

Xβ = X(P1:k + Pk+1:p)β = XP1:kβ + XPk+1:pβ =: X1β +X2β.

3.1 Decomposition of the estimator for minimum lq− in-
terpolation

In this section, we attempt to achieve a decomposition of the estimator β̂ in predic-
tion and overfitting components, analogous to what is performed in Proposition 2.5.1,
but for the minimum lq−norm interpolator. The minimum lq−norm interpolator is a
solution to the minimization problem

min
β∈Rp

∥β∥qq. (3.2)

s.t. Xβ = y (3.3)

Following the split done in (3.1), we start by doing the following.

arg min
β∈Rp

{∥β∥qq : Xβ = y} = arg min
β∈Rp

{∥P1:kβ∥qq + ∥Pk+1:pβ∥qq : Xβ = y}

= arg min
β∈Rp

{∥β1:k∥qq + ∥βk+1:p∥qq : X1β +X2β = y}

= arg min
(β1,β2)∈Rp×Rp

{∥β1∥qq + ∥β2∥qq : X1β1 +X2β2 = y},

where in the last equality, one inequality is trivially true and for the other one, by
definition of X1 and X2, the minimizers β1 and β2 must take values in range(P1:k), re-
spectively range(Pk+1:p) (which are orthogonal subspaces of Rp), or else they would
not minimize the lq−norm. This argument is similar to what we do in the proof of
Proposition 2.5.1. This allows us to decouple the minimization problem as in Proposi-
tion 2.5.1 and to optimize over β2 first. Given β1 ∈ Rp fixed,

β̂k+1:p ∈ arg min
β2∈Rp

{∥β2∥qq : X2β2 = y −X1β1}.

Although in the l2−case, this problem is easy to solve since it admits a closed form
solution, it is not the case here. To simplify the notations, let ỹ := y−X1β1. We use the
dual formulation of the minimum norm interpolating problem, that we cover in detail
in B.2 and obtain the following.

min
β2∈Rp

{∥β2∥q : X2β2 = ỹ} = max
γ∈Rn

{⟨γ, ỹ⟩ : ∥X⊤
2 γ∥q′ ≤ 1},

where q′ is the Hölder conjugate of q, that is 1
q
+ 1

q′
= 1, and where we use the fact that

the dual lq−norm is equal to the lq′−norm (see Example B.1.2).
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In essence, our idea is to use Theorem 2.5.2 to transform the condition ∥X⊤
2 γ∥q′ ≤ 1

into something more amenable.

First attempt

The first thing we may try is to do something similar to the proof of Corollary 2.5.3.
Consider the norm ∥·∥ := ∥Σ1/2

2 ·∥q′ , then by definition of X2,

∥X⊤
2 γ∥q′ = ∥G⊤γ∥,

where G is a Gaussian matrix with i.i.d standard Gaussian entries. Hence, by Theorem
2.5.2, if n ≤ κDMd∗(Σ

−1/2
2 Bp

q′), we have that with high probability,

1√
2
w
(
Σ

1/2
2 Bp

q

)
∥γ∥2 ≤ ∥X⊤

2 γ∥q′ ≤
√

3

2
w
(
Σ

1/2
2 Bp

q

)
∥γ∥2.

Therefore,

max
γ∈Rn

⟨γ, ỹ⟩ : ∥γ∥2 ≤
√

2

3

1

w
(
Σ

1/2
2 Bp

q

)
 ≤ max

γ∈Rn

{
⟨γ, ỹ⟩ : ∥X⊤

2 γ∥q′ ≤ 1
}

≤ max
γ∈Rn

⟨γ, ỹ⟩ : ∥γ∥2 ≤
√
2

1

w
(
Σ

1/2
2 Bp

q

)
 ,

which yields the following,√
2

3

1

w
(
Σ

1/2
2 Bp

q

)∥ỹ∥2 ≤ max
γ∈Rn

{
⟨γ, ỹ⟩ : ∥X⊤

2 γ∥q′ ≤ 1
}
≤

√
2

1

w
(
Σ

1/2
2 Bp

q

)∥ỹ∥2 (3.4)

by noticing that the maximum on the left-hand side is achieved by the vector

γ̃ =

√
2

3

1

w
(
Σ

1/2
2 Bp

q

) ỹ

∥ỹ∥2
,

and analogously, the maximum on the right-hand side is achieved by

γ̃ =
√
2

1

w
(
Σ

1/2
2 Bp

q

) ỹ

∥ỹ∥2
.

Therefore, (3.4) implies that with high probability,

min
β2∈Rp

{∥β2∥q : X2β2 = ỹ} ≍ 1

w
(
Σ

1/2
2 Bp

q

)∥ỹ∥2 = 1

w
(
Σ

1/2
2 Bp

q

)∥y −X1β1∥2, (3.5)
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because the lower and upper bounds in Dvoretzky-Milman theorem can actually be
made arbitrarily tight as p goes to ∞. Thus, we can express the norm of the estimator
β̂k+1:p as a function of β1 as follows. With high probability,

∥β̂k+1:p∥q ≍
1

w
(
Σ

1/2
2 Bp

q

)∥y −X1β1∥2, (3.6)

Moreover, this leads the minimization problem (3.2) to take the form

min
β∈Rp

{
∥β∥qq : Xβ = y

}
≍ min

β1∈Rp

 1

w
(
Σ

1/2
2 Bp

q

)q ∥y −X1β1∥q2 + ∥β1∥qq

 (3.7)

=
1

w
(
Σ

1/2
2 Bp

q

)q min
β1∈Rp

{
∥y −X1β1∥q2 + w

(
Σ

1/2
2 Bp

q

)q
∥β1∥qq

}
. (3.8)

The minimization problem on the right-hand side of the equation above is similar to
a regularized least squares minimization problem, apart from the fact that the least
squares term is raised to the power q. Unfortunately, it is not possible to get rid of this
power q since it is vital for the decomposition of the lq−norm of β into two compo-
nents. This prevents the use of results such as the one from Chinot in [Chi19] because
the loss does not satisfy the typical regularity conditions we would expect, specifically
in that case, because it is not Lipschitz. However, the function class we restrict to is
not a general convex set as in [Chi19] but consists only of linear functions, which may
facilitate the matter.
The approach taken in this first attempt seems interesting at first as it comes as a more
or less natural generalization of what is done in [LS22]. Indeed, in the paper of Lecué
et al., q = q′ = 2, and that allows us to make the effective rank appear with the bounds
on the Dvoretzky dimension (see Example 2.5.1 and remark below). Furthermore, it
generalizes the observation in Remark 2.5.1 that β̂1:k is approximately equal to

arg min
β1∈Rp

(
∥y −X1:kβ1∥22 + tr(Σk+1:p)∥β1∥22

)
,

as in that case,
√
tr(Σk+1:p)/2 ≤ w(Σ

1/2
k+1:pB

p
2) ≤

√
tr(Σk+1:p).

However, this approach actually comes with caveats, and one of them is consider-
able. First of all, the Dvoretzky-Milman condition n ≤ κDMd∗(Σ

−1/2
2 Bp

q′) is difficult to
understand, because

d∗(Σ
−1/2
2 Bp

q′) =
w
(
Σ

1/2
2 Bp

q

)2
diam (Bp

q , l
p
2)

2 ,

and neither the Gaussian width, nor the diameter of the ellipsoid Σ
1/2
2 Bp

q , are easy to
compute, as they involve the lq−norm. Indeed, the Gaussian width is given by

w
(
Σ

1/2
2 Bp

q

)
= E sup

v∈Bpq
⟨v,Σ1/2

2 g⟩ = E∥Σ1/2
2 g∥q′ ,

40



where g ∼ N (0, I). Moreover, the diameter is given by

diam
(
Bp
q , l

p
2

)
= sup

∥Σ−1/2
2 v∥q≤1

∥v∥2.

Secondly, since computing the Gaussian width of Σ1/2
2 Bp

q is hard, it means that we do
not have access to the regularization parameter w(Σ1/2

2 Bp
q ).

The major drawback of this approach however, is the simple fact that the Gaussian
width of Σ1/2

2 Bp
q does not give in general a useful Dvoretzky regime. Indeed, for q = 1

for example, in the case of l1−regularization, the Dvoretzky condition we would have
to satisfy is the too restrictive

n ≲ log(p).

Second attempt

Another idea we explore, in order to avoid the impractical Dvoretzky condition from
the first attempt, is to use some localization argument to obtain another asymptotically
equivalent formulation of the minimization problem. This time we want to show with
the help of Dvoretzky-Milman theorem that with high probability,

max
γ∈Rn

{⟨γ, ỹ⟩ : ∥X⊤
2 γ∥q′ ≤ 1} ≍ 1

w(Kµ)
∥ỹ∥2, (3.9)

where Kµ := Bp
q ∩ µBp

2 is the intersection between the unitary lq−ball and an l2−ball
for some µ that we define later. The use of the term ‘localization’ must be understood
in the sense that we try to localize a certain vector with high probability in the set Kµ

instead of the whole lq−ball. As before, the right-hand side in (3.9) gives us an approxi-
mation of ∥β̂k+1:p∥q in terms of β1 which provides an easier minimization problem akin
to a regularized least squares minimization problem in place of the minimum lq−norm
interpolation problem.
Let us explain how we arrive at the expression (3.9). We must take γ as large as pos-
sible, with the added constraint that ∥X⊤

2 γ∥q′ ≤ 1. Therefore, we take some γ that is
parallel to ỹ and we want to argue that the maximizer is of the form

γ̃ ≍ 1

w(Kµ)

ỹ

∥ỹ∥2
.

In order to do that, we must analyze the condition ∥X⊤
2 γ∥q′ ≤ 1. This time, we go one

level further than in the first attempt. Instead of using Dvoretzky-Milman theorem
immediately to make the constraint nicer, we are using it later. By the dual formulation
of the norm,

∥X⊤
2 γ∥q′ = max

b∈Bpq
⟨X⊤

2 γ, b⟩.

We would like to be able to localize the b that maximizes the quantity above in the
following way. We would like to say that the typical b actually lives in a possibly
much smaller space than Bp

q . Therefore, we observe that{
γ : ∥X⊤

2 γ∥q′ ≤ 1
}
⊂
{
γ : max

b∈Bpq∩µBp2
⟨X⊤

2 γ, b⟩ ≤ 1

}
,
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for any µ > 0. Hence, for any µ > 0,

max
γ∈Rn

{
⟨γ, ỹ⟩ : ∥X⊤

2 γ∥q′ ≤ 1
}
≤ max

γ∈Rn

{
⟨γ, ỹ⟩ : max

b∈Bpq∩µBp2
⟨X⊤

2 γ, b⟩ ≤ 1

}
.

Next, we use Dvoretzky-Milman theorem to control the quantity maxb∈Kµ⟨X⊤
2 γ, b⟩.

max
b∈Kµ

⟨X⊤
2 γ, b⟩ = max

b∈Kµ
⟨γ,X2b⟩ = max

η∈X2Kµ
⟨γ, η⟩.

By Dvoretzky-Milman theorem (Theorem C.2.2), we have that with high probability,

X2Kµ = G(n×p)Σ
1/2
2 Kµ ≈ w(Σ

1/2
2 Kµ)B

n
2 , (3.10)

and hence, when p tends to ∞, with high probability,

max
η∈X2Kµ

⟨γ, η⟩ = max
η∈w(Σ1/2

2 Kµ)Bn2

⟨γ, η⟩ = w(Σ
1/2
2 Kµ)∥γ∥2.

Therefore, still with high probability,

max
γ∈Rn

{
⟨γ, ỹ⟩ : ∥X⊤

2 γ∥q′ ≤ 1
}
≤ max

γ∈Rn

{
⟨γ, ỹ⟩ : w(Σ1/2

2 Kµ)∥γ∥2 ≤ 1
}
=

1

w(Σ
1/2
2 Kµ)

∥ỹ∥2,

which yields the high probability upper bound

∥β̂k+1:p∥q ≤
1

w(Σ
1/2
2 Kµ)

∥y −X1β1∥2.

In order for (3.10) to be correct, the Dvoretzky condition must hold, that is, we must
have

√
n ≲

w(Σ
1/2
2 Kµ)

diam(Σ
1/2
2 Kµ)

.

Observe that

diam(Σ
1/2
2 Kµ) = max

v∈Σ1/2
2 Kµ

∥v∥2 = max
b∈Kµ

∥Σ1/2
2 b∥2 ≤ ∥Σ1/2

2 ∥opmax
b∈Kµ

∥b∥2 =
√

λk+1µ.

Therefore, to ensure Dvoretzky condition is satisfied, we can enforce the stronger
condition

√
n ≲

w(Σ
1/2
2 Kµ)

∥Σ1/2
2 ∥opµ

=
w(Σ

1/2
2 Kµ)√
λk+1µ

,

which can be equivalently stated as

µ ≲
w(Σ

1/2
2 Kµ)√

n
√
λk+1

.

This provides a sophisticated constraint on the choice of µ, since µ appears on both
sides of the expression. The idea would be to pick µ that saturates Dvoretzky condi-
tion, that is, to take µ such that

µ ≈ w(Σ
1/2
2 Kµ)√

n
√

λk+1

≈ w(Kµ)√
n

. (3.11)

However, there remains to find a matching lower bound, and this inevitably puts fur-
ther restrictions on the choice of localization parameter µ.
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Remark 3.1.1. As indicated in [Ver18, Exercise 7.5.4], it can also be shown that

w
(
Σ

1/2
2 Kµ

)
≤ ∥Σ1/2

2 ∥opw (Kµ) =
√

λk+1w (Kµ) .

We need the matching lower bound

∥β̂k+1:p∥q ≥
1

w(Σ
1/2
2 Kµ)

∥y −X1β1∥2,

to be able to conclude that, with high probability,

∥β̂k+1:p∥q =
1

w(Σ
1/2
2 Kµ)

∥y −X1β1∥2.

In order to find such a lower bound, we must tackle an issue that we initially
avoided when deriving the upper bound. Indeed, for a lower bound of this type to
hold, we need to relate the maximum over the lq−ball with the maximum under the
localization constraint in a precise manner. That is, we must actually choose µ such
that

max
b∈Bpq

⟨X⊤
2 γ, b⟩ = max

b∈Bpq∩µBp2
⟨X⊤

2 γ, b⟩. (3.12)

For this equality to hold in general, we must pick µ ≥ ∥b∗(γ)∥2, where

b∗(γ) := arg max
b∈Bpq

⟨X⊤
2 γ, b⟩.

However, this creates a dependence of µ on γ. But then, if µ depends on γ, it means
that the localization we perform depends on γ as well. To fix this issue, we define for
all suitable γ,

µ(γ) := ∥b∗(γ)∥2, and µ̃ := max
γ∈Rn

{µ(γ) : ∥X⊤
2 γ∥q′ ≤ 1}. (3.13)

Note that we can express b∗(γ) in terms of X2 and γ, by arguing as in Example B.1.2.
For all 1 ≤ i ≤ p, define zi as follows.

zi = sgn((X⊤
2 γ)i)

∣∣(X⊤
2 γ)i

∣∣q−1
,

where sgn denotes the sign function. Then

b∗ =
z

∥z∥q′
.

Unfortunately for us, the quantity µ̂ still depends on the condition ∥X⊤
2 γ∥q′ ≤ 1, so it

seems like we have just displaced the problem.
Another thing we could try is to not be aiming for the equality (3.12) to hold in general,
but only with high probability. By Borell-TIS, we can obtain that the maximum of the
Gaussian process

⟨X⊤
2 γ, b⟩
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concentrates around its mean, that is, with high probability,

∥X⊤
2 γ∥q′ = max

b∈Bpq
⟨X⊤

2 γ, b⟩ ≍ Emax
b∈Bpq

⟨X⊤
2 γ, b⟩.

Then, we can focus our attention on making the following equality hold with high
probability instead of (3.12).

Emax
b∈Bpq

⟨X⊤
2 γ, b⟩ = E max

b∈Bpq∩µBp2
⟨X⊤

2 γ, b⟩,

for a suitable µ. This equality holds if

E∥b∗(γ)∥2 ≤ µ,

for all γ. Therefore we could adapt the definition of µ̃ to become

µ̃ = max
γ∈Rn

{E∥b∗(γ)∥2 : E∥X⊤
2 γ∥q′ ≤ 1}. (3.14)

Or, going even further, exploiting the form of b∗ we could also assume that µ(γ)
must only fulfill

E[∥z∥q′ ]µ(γ) = E∥z∥2,
that is,

µ(γ) =
E∥z∥2
E∥z∥q′

.

and hence define
µ̃ = max

γ∈Rn
{µ(γ) : E∥X⊤

2 γ∥q′ ≤ 1}. (3.15)

We are unable to find a way to guarantee that a µ̃ defined as in (3.13), (3.14), or (3.15)
and that simultaneously fulfills Dvoretzky condition (3.11) exists at this moment. But,
assuming that such a µ̃ exists, we would reach the goal of this section which is to get
that the following holds with high probability.

∥β̂k+1:p∥q =
1

w(Σ
1/2
2 Kµ)

∥y −X1β1∥2.

3.2 Control of the excess risk

In this section we assume that the lq−minimum norm interpolator asymptotically be-
haves like a ridge estimator as follows, for some suitable µ (assumed to exist).

min
β∈Rp

{
∥β∥qq : Xβ = y

}
≍ min

β1∈Rp

{
1

w (Kµ)
q ∥y −X1β1∥q2 + ∥β1∥qq

}
(3.16)

=
1

w (Kµ)
q min
β1∈Rp

{
∥y −X1β1∥q2 + w (Kµ)

q ∥β1∥qq
}
. (3.17)

We direct our focus on trying to show that the minimum lq−norm interpolator is close
enough to the true parameter β∗, and that its excess risk is small enough. In order
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to control the excess risk, we try to proceed as in the proof of Theorem 2.5.5. We
would like to confine the estimator β̂1 in a ball centered at the true parameter β∗

1 whose
associated norm provides control on the excess risk. In order to do that, we attempt to
find a decomposition of a certain function L of β1 similar to the decomposition (2.11).
However, since we are working with the lq−norm as well as expressions raised to the
power q, the decomposition we are looking for necessarily looks nothing like the one
in [LS22]. Let’s try to do this decomposition with the function

L(β1) := ∥y −X1β1∥q2 + w(Kµ)
q∥β1∥qq −

(
∥y −X1β

∗
1∥

q
2 + w(Kµ)

q∥β∗
1∥qq
)
, (3.18)

which would yield L(β̂1) ≤ 0 by definition. We immediately notice that in order for
a term of the form ∥β1 − β∗

1∥qq to appear in our decomposition, we would need to use
very loose bounds such as

∥β1 − β∗
1∥qq ≥ (∥β1∥q − ∥β∗

1∥q)
q ≥ ∥β1∥qq − ∥β∗

1∥qq.

Not only is this bound loose, but more importantly, in order to imitate the proof tech-
nique of [LS22], we need to find a decomposition that is an equality. It may be possible
to find ways to analyze the regularized least squares problem through the means of
the methods presented in [Chi19] and [Men14]. The results of the paper of Mendel-
son [Men14] may be able to help us define a decomposition thanks to its minimal
assumptions on the loss. Indeed, its results do not rely on the traditional contraction
arguments that require a Lipschitz condition on the loss; it replaces it by asking for
a small-ball property. However, the paper of Mendelson is only concerned about the
setting with no regularization. The paper of Chinot deals with regularized empirical
risk minimization for a wide range of regularization functions but assumes a Lipschitz
condition on the loss, which is not satisfied in our setting. Regardless, the fact that the
terms in (3.18) are raised to the power q simply does not allow us to express it in a way
that enables the use of the classical statistical framework of regularized empirical risk
minimization (RERM). Indeed,

∥y −X1β1∥q2 =

(
n∑
i=1

(yi − ⟨xi, β1⟩)2
)q/2

where xi denotes the i−th row of X1. However, in order for the problem to at least fit
the framework of RERM, we would need to get rid of the power q to have the classical
term

∥y −X1β1∥2,

in which case we would be in the setting of regularized least squares. We unfortu-
nately do not find a way to circumvent this major issue in our essay but there might
be other functions L that would clear the problem.
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Chapter 4

Conclusion

In this essay, we reviewed the relatively new concept of benign overfitting and uncov-
ered the mechanisms that lie at the heart of this surprising phenomenon.
We first introduced the framework in which we examined benign overfitting and pro-
vided motivation for the study of this particular framework.
Then, we went through the main results of the papers in a chronological manner and
presented how they get proven by highlighting the important steps in the proofs. We
focused on the upper bounds on the excess risk of the minimum l2−norm interpolator
for the overparametrized linear regression problem, but the papers we studied also
provide lower bounds demonstrating the sharpness of the control they obtain, and the
paper [TB20] extends the results to the ridge regression setting. The papers [BLLT20]
and [TB20] rely on a bias-variance decomposition of the excess risk, whereas the pa-
per [LS22] takes an arguably more general approach, that is rooted in a geometric
understanding of Gaussian random matrices. At the heart of the three papers resides
the phenomenon of concentration of measures (see for example [Led01], [Ver18]) that
is exploited to yield control over random quantities with high probability.
Finally, we attempted to build upon the approach of [LS22] to generalize the analysis
of benign overfitting to the case of minimum lq−norm interpolators. Our core idea to
attack this problem was to use the fact that under Dvoretzky condition, the random
projection of the unit lq−ball by a Gaussian matrix looks like the unit l2−ball thanks
to Dvoretzky-Milman theorem. Hence, even for the lq−norm, we expected the mini-
mum lq−norm interpolator to behave like an estimator for regularized least squares.
There were two major obstacles that we would need to overcome to bring this idea
to life. The first one was that, in order to leverage this property without imposing
a too restrictive Dvoretzky condition on n, we had to use a localization trick. As it
turned out, finding the right localization parameter µ is challenging. We found condi-
tions that such a µ needed to fulfill but we did not show that this µ existed. The second
challenge was that, due to the impractical decomposition of the minimum lq−norm in-
terpolator into prediction and overfitting components, the resulting regularized min-
imization problem did not have a satisfactory form, as it resembled the problem of
regularized least squares but with the least squares term raised to the power q. As
a result, it proved difficult to find some sort of ‘quadratic+multiplier+regularization’
decomposition, crucial for the idea behind the proof of [LS22] to be adapted. If we
were to investigate the generalization of benign overfitting in the context of minimum
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lq−norm interpolators further, these two issues are the ones we would need to tackle
first.
From the analysis made in [BLLT20], [TB20], and [LS22], we were able to convey why
the notion of benign overfitting does not contradict the traditional viewpoint on over-
fitting leading to poor generalization; rather, it enriches the picture by providing expla-
nations for linear regression models, and heuristics more generally, for the existence
of benign overfitting in particular regimes. Furthermore, in the work of Lecué et al.,
it is demonstrated that when the right conditions are aligned, benign overfitting takes
place with high probability and therefore we should expect to witness it consistently.
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Appendix A

Random variables and random vectors

This appendix is considerably influenced by Chapter 2 and 3 from the remarkable
book [Ver18].

A.1 Concentration of random variables

A.1.1 Subgaussian random variables

As their name suggest, subgaussian random variables are dominated my Gaussian
random variables in some sense. Roughly speaking, the tail of a subgaussian random
variable is smaller than the tail of a Gaussian random variable. Therefore, subgaussian
random variables are at least as concentrated around their mean as Gaussian random
variables are. Let us first define the notion of subgaussian norm before we formally
introduce subgaussian random variables.

Definition A.1.1. The subgaussian norm ∥·∥ψ2 on the space of subgaussian random
variables is defined as

∥X∥ψ2
:= inf

{
t ≥ 0 : E exp(X2/t2) ≤ 2

}
.

Definition A.1.2. A random variable X is subgaussian if it satisfies one of the follow-
ing equivalent properties:

i) P (|X| ≥ t) ≤ 2 exp(−ct2/∥X∥ψ2) for all t ≥ 0,

ii) ∥X∥Lp ≤ C∥X∥ψ2

√
p for all p ≥ 1,

iii) E exp(X2/∥X∥2ψ2
) ≤ 2,

iv) if EX = 0 then E exp(λX) ≤ exp(Cλ2∥X∥2ψ2
), for all λ ∈ R.

In the above, C, c are some absolute constants. Furthermore, up to absolute constant
factors, ∥X∥ψ2 is the smallest possible number for which these inequalities are valid.

Example A.1.1. A Gaussian random variable X ∼ N (0, σ2), for some σ > 0, is a subgaussian
random variable with ∥X∥ψ2 ≤ Cσ.
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Example A.1.2. Given a random vector X = X1, . . . , XN with σ−subgaussian independent
entries, and a vector v ∈ RN , v⊤X is a c1σ−subgaussian random variable, for some constant
c1 > 0.

Proof.

E exp
(
λv⊤X

)
= E exp

(
λ

N∑
j

vjXj

)
=

N∏
j

E exp(λvjXj) ≤
N∏
j

E exp(λ2v2j c1σ
2)

= E exp

(
λ2c1σ

2

N∑
j

v2j

)
= E exp(λ2c1σ

2∥v∥22).

Remark A.1.1. The smaller the subgaussian norm, the faster the tail of the distribution
decays and the smaller the variance of the distribution becomes.

A.1.2 Subexponential random variables

We now introduce a notion capturing the behaviour of distributions that have heavier
tail than the Gaussian distribution, but that still have thinner tails than the exponential
distribution. We first introduce the subexponential norm, which is analogous to the
subgaussian norm.

Definition A.1.3. The subexponential norm ∥·∥ψ1 on the space of subexponential ran-
dom variables is defined as

∥X∥ψ1
:= inf{t > 0 : E exp(|X| /t) ≤ 2}. (A.1)

Definition A.1.4. A random variable X is subexponential if it satisfies one of the fol-
lowing equivalent properties:

i) P (|X| ≥ t) ≤ 2 exp(−ct/∥X∥ψ1) for all t ≥ 0,

ii) ∥X∥Lp ≤ C∥X∥ψ1p for all p ≥ 1,

iii) E exp(|X| /∥X∥ψ1) ≤ 2,

iv) if EX = 0 then E exp(λX) ≤ exp(Cλ2∥X∥2ψ1
), for all λ such that |λ| ≤ 1

∥X∥ψ1
.

In the above, C, c are some absolute constants. Furthermore, up to absolute constant
factors, ∥X∥ψ1 is the smallest possible number for which these inequalities are valid.

Remark A.1.2. A recurrent example of subexponential random variables that will be
relevant for us is given by the sum of squares of subgaussian random variables. It often
appears when we consider the squared norm of a random variable with subgaussian
entries. For example the χ2−distribution is a subexponential distribution arising as
the squared norm of a Gaussian random vector.
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Lemma A.1.1. A random variable X is subgaussian if and only if X2 is subexponential.
Moreover,

∥X2∥ψ1 = ∥X∥2ψ2

Proof. This can immediately be seen by comparing the definitions of subgaussian norm
and subexponential norm.

Remark A.1.3. It can also easily be shown that if a random variable X is subexponential,
then so is X − EX and

∥X − EX∥ψ1 ≤ C∥X∥ψ1 ,

where C is an absolute constant.

A.1.3 Bernstein’s concentration inequality

Bernstein’s inequality illustrates the concentration phenomena in high dimension in
the case of subexponential random variables. Its proof relies on bounding the moment
generating function (MGF) of each random variable individually. In this subsection,
we will present a few different forms of Bernstein’s inequality that will be useful to
follow the proof of multiple results presented in our paper.

According to [Ver18, Theorem 2.8.1],

Theorem A.1.2 (Bernstein’s inequality). Let X1, . . . , XN be independent mean-zero subex-
ponential random variables. Then for every t ≥ 0, we have

P

(
|
N∑
i=1

Xi| ≥ t

)
≤ 2 exp

(
−cmin

(
t2∑N

i=1∥Xi∥2ψ1

,
t

maxi ∥Xi∥ψ1

))
, (A.2)

where c > 0 is an absolute constant.

Let us also write down another version of Bernstein’s inequality, [Ver18, Theorem
2.8.2] that is more adequate for the proof of Theorem 2.3.1.

Theorem A.1.3 (Bernstein’s inequality, alternative version). Let X1, . . . , XN be indepen-
dent mean-zero subexponential random variables and let a = (a1 . . . , aN) ∈ RN . Then for
every t ≥ 0, we have

P

(
|
N∑
i=1

aiXi| ≥ t

)
≤ 2 exp

(
−cmin

(
t2

maxi∥Xi∥2ψ1

∑N
i a2i

,
t

maxi ∥Xi∥ψ1 maxi ai

))
,

(A.3)
where c > 0 is an absolute constant.

Corollary A.1.4. There exists an absolute constant c > 0 such that, for any X1, . . . , XN

independent mean-zero σ−subexponential random variables, any a = (a1 . . . , aN) ∈ RN such
that a1 ≥ . . . ≥ aN > 0, and any s > 0, with probability at least 1− 2e−s,∣∣∣∣∣

N∑
i

aiXi

∣∣∣∣∣ ≤ cσmax

sa1,

√√√√s

N∑
i

a2i

 .
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Proof. Take s = cmin
{

t2

σ2
∑N
i a2i

, s
σa1

}
in Theorem A.1.3 and observe that

t =
1

c
σmax

sa1,

√√√√s

N∑
i

a2i

 .

A.2 Miscellaneous

Definition A.2.1. The covariance matrix of a random vector X ∈ Rp is defined as
cov(X) := E(X − µ)(X − µ)T = EXXT − µµT where µ := EX . The second moment
matrix of a random vector X is defined as

Σ(X) := EXXT . (A.4)

Remark A.2.1. We will often assume that the random vector X is centered (EX = 0) as
it is easy to go back to the general case from the centered case. Therefore, we will often
have that cov(X) = Σ(X) and for simplicity we will denote the covariance matrix of
X as Σ, when it is unambiguous.

Remark A.2.2. Note that the covariance matrix and the second moment matrix are pos-
itive semi-definite symmetric. Hence all their eigenvalues are non-negative.
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Appendix B

Dual formulation of minimization
problem

B.1 Dual norm

Definition B.1.1. Given a norm ∥·∥ on a Banach space X , we define the dual space X ∗

to be the space of continuous linear functionals X → R. Moreover, we define the dual
norm ∥·∥∗ : X ∗ → R to be given by

∥f∥∗ := sup
x∈B

|f(x)| ,

where B denotes the unit ball in X with respect to the norm ∥·∥.

Example B.1.1. Given a norm ∥·∥ on Rp, (Rp)∗ is the space of linear functionals Rp → R. In
this case, one can observe that the linear functionals on Rp can be characterized by vectors in
Rp, that is, for any linear functional f on Rp, there exists a unique vector y in Rp such that
for all x in Rp, f(x) = y⊤x and thus (Rp)∗ can be identified with Rp. Moreover, with a slight
abuse of notations, the dual norm ∥·∥∗ : (Rp) → R then becomes

∥y∥∗ := sup
x∈B

∣∣y⊤x∣∣ = sup
x∈B

y⊤x,

where B denotes the unit ball in Rp with respect to the norm ∥·∥.

Example B.1.2. More generally, given real numbers p1, p2 > 1 such that 1
p1

+ 1
p2

= 1, the
dual norm of the lp1−norm ∥·∥p1 on Rp is given by the lp2−norm ∥·∥p2 on Rp. Moreover, the
dual norm of the l∞−norm is the l1−norm, and vice-versa. Furthermore, the vector x̃ ∈ Bp1

2

that achieves
(∥y∥p1)∗ = sup

x∈Bpp1

y⊤x = ∥y∥p2

is the following.
For all 1 ≤ i ≤ p, define zi as follows.

zi = sgn(yi) |yi|p1−1 ,

where sgn denotes the sign function. Then x̃ = z
∥z∥p2

.
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Example B.1.3. Given ∥·∥2 the l2−norm on Rp and a symmetric matrix Γ ∈ Rp×p, define the
norm ∥·∥ := ∥Γ·∥2. Then its dual norm is given by ∥·∥∗ = ∥Γ−1·∥2.

Proof. Given a vector y in Rp,

∥y∥∗ = sup
∥x∥≤1

⟨y, x⟩ = sup
∥Γx∥2≤1

⟨y, x⟩

= sup
∥Γx∥2≤1

⟨y,Γ−1Γx⟩ = sup
∥Γx∥2≤1

⟨Γ−1y,Γx⟩

= sup
∥z∥2≤1

⟨Γ−1y, z⟩ = ∥Γ−1y∥2,

where the last equality holds by the dual characterization of the norm.

In particular, we will use this result for positive definite diagonal matrices.

B.2 Derivation of the dual problem

Given a norm ∥·∥ on Rp, a matrix X ∈ Rn×p with independent rows with p ≥ n, and
given vectors β ∈ Rp and y ∈ Rn, the primal minimization problem we want to solve
is given by

min
β∈Rp

∥β∥ (B.1)

s.t. Xβ = y (B.2)

It can be stated as Lagrange dual maximization problem. We show what the dual
problem is and that the duality gap is zero, that is, the primal and dual problems are
equivalent.

In what follows, we more or less adapt the exposition in [CLvdG22, Proof of Lemma
2.2.].

The Lagrangian is defined as

L : Rp −→ R, (β, γ) 7−→ L(β, γ) := ∥β∥+ γ⊤(Xβ − y).

The primal problem can be rewritten as

min
β∈RP

max
γ∈Rn

L(β, γ), (B.3)

and the dual problem is given by

max
γ∈Rn

min
β∈RP

L(β, γ) (B.4)

Let us first rewrite the problem minβ∈RP L(β, γ) in a more suitable form.

min
β∈RP

L(β, γ) = min
β∈RP

(
∥β∥+ γ⊤(Xβ − y)

)
= −γ⊤y −max

β∈Rp

(
⟨β,−X⊤γ⟩ − ∥β∥

)
(B.5)

where in the second equality we use the fact that ⟨γ,Xβ⟩ = ⟨β,X⊤γ⟩. Now let us
introduce the notion of convex conjugate of a function.
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Definition B.2.1. Given a function f : Rp −→ R, the convex conjugate f ∗ of f is defined
as

f ∗ : Rp −→ R, y 7−→ f ∗(y) := sup
x∈Rp

(⟨y, x⟩ − f(x)). (B.6)

Let us consider f(β) = ∥β∥, then f ∗(δ) =

{
0 if δ ∈ B∗,

+∞ otherwise,
where B∗ is unit the ball with respect to the dual norm. Indeed, by definition of the

dual norm and from the discussion in Example B.1.1,

∥δ∥∗ = sup
∥x∥≤1

δ⊤x,

Thus if ∥δ∥∗ ≤ 1, ⟨δ, x⟩ ≤ ∥x∥ for all x in Rp and in particular, for x = 0, ⟨δ, x⟩ = 0,
which implies that f ∗(δ) = 0. On the other hand, if ∥δ∥∗ > 1, there exists x such that
∥x∥ ≤ 1 and ⟨δ, x⟩ > 1. Therefore, for all t > 0, f ∗(δ) ≥ ⟨δ, tx⟩ − ∥tx∥ = t(⟨δ, x⟩) − ∥x∥,
and the right-hand side tends to infinity as t goes to infinity.

Hence, (B.4) becomes

max
γ∈Rn

(−γ⊤y −max
β∈Rp

(
⟨β,−X⊤γ⟩ − ∥β∥

)
, (B.7)

and from our analysis of the behaviour of the convex conjugate, we notice that the
dual problem becomes

max
γ∈Rn

γ⊤y

s.t. ∥X⊤γ∥∗ ≤ 1

where ∥·∥∗ denotes the dual norm of ∥·∥ as defined in B.1. Therefore, by weak duality,
we have that the following holds.

min
β∈Rp

∥β∥ ≥ max
γ∈Rn

γ⊤y

s.t. Xβ = y s.t. ∥X⊤γ∥∗ ≤ 1

Moreover, since by assumption, p ≥ n and the rows of X are independent, the Moore-
Penrose pseudoinverse exists. This implies that Slater’s condition (see for example
subsection 5.2.3 in [BV04]) is fulfilled and that strong duality holds, that is, the primal
problem and the dual problem coincide. Therefore we obtain the following.

min
β∈Rp

∥β∥ = max
γ∈Rn

γ⊤y

s.t. Xβ = y s.t. ∥X⊤γ∥∗ ≤ 1
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Appendix C

Complexity measure and
Dvoretzky-Milman theorem

Most of the content of this appendix is drawn from the exposition in the book [Ver18].

C.1 Random processes

Definition C.1.1 (Random process). A random process is a family of random variables
(Xt)t∈T on the same probability space, indexed by the elements of some set T .

Given a set T that indexes the random process (Xt)t∈T , we can define the canonical
metric on T to be given by

d(t, s) := ∥Xt −Xs∥2 = (E(Xt −Xs)
2)1/2. (C.1)

There are two main quantities characterizing random processes, the covariance func-
tion Σ(s, t) and the increments ∥Xt − Xs∥2. These two quantities are related to one
another by the following relations

E(Xt −Xs)
2)1/2 = (Σ(t, t)− 2Σ(t, s) + Σ(s, s))1/2 and

Σ(t, s) =
1

4

(
E(Xt − (−Xs))

2)− E(Xt −Xs)
2)
)

∀t, s ∈ T.

C.1.1 Gaussian processes

A Gaussian process is a random process (Xt)t indexed by a set T such that for every
finite subset T0 ⊂ T , (Xt)t∈T0 is a Gaussian random vector. The quintessential Gaussian
process is the canonical Gaussian process.

Definition C.1.2. The canonical Gaussian process is a Gaussian process of the form

Xt = ⟨g, t⟩, t ∈ T,

where T is a subset of RN and g is a standard Gaussian random vector in RN .
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All Gaussian processes can be written in the form of a canonical Gaussian pro-
cess, because for any Gaussian random vector Y = (Y1, . . . , YN), there exists points
t1, . . . , tn ∈ RN such that Y and (⟨g, ti⟩)ni=1 have the same law, where g is a standard
Gaussian random vector in RN .

There is a wide range of tools to bound Gaussian processes, one of them being
the so-called Borell-TIS theorem. We give here a version corresponding to [Led01,
Theorem 7.1].

Theorem C.1.1. Let (Gt)t∈T be a centered Gaussian process indexed by a countable set T such
that supt∈T Gt < +∞ almost surely. Then

E sup
t∈T

Gt < +∞,

and for all r ≥ 0,

P
(
sup
t∈T

Gt ≥ E sup
t∈T

Gt + r

)
≤ exp

(
−r2/2σ2

)
,

where σ2 = supt∈T E(G2
t ) < +∞.

C.2 Gaussian width

The Gaussian width of a set T is a fundamental characteristic of the set, comparable in
informativeness with the volume or the surface area. It naturally arises as an overall
bound on the canonical Gaussian process on T .

Definition C.2.1 (Gaussian width). The Gaussian width of a subset T ⊂ Rn is defined
as

w(T ) = E sup
t∈T

⟨g, t⟩, (C.2)

where g is a standard Gaussian vector in Rn.

It has strong properties of invariance and linearity directly coming from the invari-
ance properties of the normal distribution.

Stable dimension

The standard notion of dimension of a subset T of Rn is very sensitive to small per-
turbations of the set T . Imagine if T lives in a one-dimensional subspace of Rn, for
example imagine that it’s a collection of points on a line. Then, if T is a set of data,
with some small measurement error (perturbation), maybe T would still be very close
to being enclosed in the line, its diameter and its Gaussian width would not change
much. However, its dimension would immediately jump from 1 to n with high prob-
ability, assuming that the noise is i.i.d. Gaussian for example. Therefore the usual
notion of dimension captures poorly the complexity of T . That motivates the defini-
tion of stable dimension. This concept relies on a notion that is very closely related to
Gaussian width.
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Definition C.2.2.

h(T ) :=

(
E sup

t∈T
⟨g, t⟩2

)1/2

, (C.3)

where g is a standard Gaussian vector in Rn.

We have the following relationship between Gaussian width and this new quantity:

Theorem C.2.1.
2w(T ) ≤ h(T − T ) ≤ 2Cw(T ). (C.4)

Definition C.2.3 (Stable dimension). For a bounded subset T in Rn, the stable dimen-
sion is defined as

d(T ) :=
h(T − T )2

diam(T )2
∼ w(T )2

diam(T )2
. (C.5)

Let us give a statement of Dvoretzky-Milman theorem, following the exposition
of [Ver18, Theorem 11.3.3]

Theorem C.2.2. Let G be an n × p Gaussian random matrix with i.i.d. N (0, 1) entries, let
T ⊂ Rp be a bounded set, and let ϵ ∈ (0, 1). Suppose that

n ≤ cϵ
w(T )2

diam(T )2
,

for some constant c. Then with high probability,

(1− ϵ)w(T )Bp
2 ⊂ conv(GT ) ⊂ (1 + ϵ)w(T )Bp

2 ,

where conv(GT ) denotes the convex hull of the set GT .

There are multiple proofs of Theorem C.2.2, and the approach chosen in [Ver18]
is to prove it via a two-sided Chevet’s inequality that is obtained through the tools
provided by generic chaining and Talagrand’s majorizing theorem.
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